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1 Introduction

This report discusses and presents a replication of a selection of findings from Carrasco
and Rossi as well as an empirical application of the methods. Carrasco and Rossi discusses
in-sample prediction and out-of-sample forecasting in regressions with many exogenous
predictors based on four dimension-reduction devices: principal components (PC), ridge,
Landweber Fridman (LF), and partial least squares (PLS). Each involves a regulariza-
tion or tuning parameter that is selected through generalized cross validation (GCV) or
Mallows Cp. Following Carrasco and Rossi we evaluate these estimators in a monte carlo
simulation framework with 6 different data generating processes (DGPs).

2 Factor Models in Economics

Factor models attempt to explain panels of data in terms of a smaller number of common
factors that apply to each of the variables in the dataset. In the case of high dimensional
data, factor models are a useful tool to reduce the dimensionality of the dataset, making
estimation possible where the dataset would have been rank deficient before. A factor
model on panel data can be represented as

X = F AN + ¢
S R
(TxN)  (Txr) (rxN) (TxN)

where X denotes the matrix of observations, F' the underlying factors and A the
corresponding factor loadings. £ is an idiosyncratic shock.

Additionally, through dimensionality reduction, factor models can find the most im-
portant variables that effect the outcome variables. For factor models in general, a crucial
part of the estimation procedure is determining the number of factors to use. This is the
context that Carrasco and Rossi is set in. The parameter used to select the number of
factors in a factor model is also known as the regularization parameter. Carrasco and
Rossi run simulations to analyze each of the different dimension reduction devices.

3 Data Generating Process

To study how accurate each estimation method is, Carrasco and Rossi simulate six dif-
ferent data generating processes, both in the large and small sample cases. In the large
sample case, the size of the data set is N = 200 and 7" = 500. In the small sample case,
the size is N = 100 and T" = 50.

For each of the six simulations, Carrasco and Rossi assume these distributions:

F,A, & ~ iidN(0,1) (1)
v ~ iidN(0,1)

For each of the DGP’s, X is constructed as in section [2, and y is constructed as:

y = F 0 + v
~ NN =~
(Tx1) (Txr) (rx1) (T'x1)



> DGP 1 (Few Factors Structure):
0 is the (r x 1) vector of ones, r = 4 and 7pe, = 7 + 10
(

> DGP 2 (Many Factors Structure):
T

0 is the (r x 1) vector of ones, r = 50 and 7,4, = min(N, 3)

> DGP 3 (Five Factors but only One Relevant):

0 = (17 Ol><4)7 r=>5and Iy = mZ?’L(’[“ + 10, m’ln(Na %))

F=[F,F) and F x F' =

OO OoOH
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WO O
OO

y = F'0 + v where F is generated from X equation in DGP 3, and o, = 0.1

> DGP 4 (z; Has a Factor Structure but Unrelated to y;):

6 is a vector of zeros with dimension (r x 1). 7 =5, 7ymee = 7+ 10. F x F is defined
as in DGP 3.

> DGP 5 (Eigenvalues Declining Slowly):
0 is an (N x 1) vector of ones. 7 = N, 70, = min(V,
A=M®eE, with £ ~ (N x N) matrix of idN (0, 1)

N

).

11 1
11 1
M~(NxN)=|7 ? ’
11 1

N N

> DGP 6 (Near Factor Model):

O=1,7=1rma =7 +10, A" = 1y

4 Estimation Methods

4.1 Notation

In matrix notation the model is

Y1 ZC;[ €1
Y2 Lo €2
y=1| 7 | x= R
yr xl €r

where y is a (1" x 1) vector, X is a (T" x N) matrix of predictors and ¢ is a (7" x 1)

vector. We then write Ty X7
SJ:J: = > Sry = Ty

and



Moreover we denote as « the choice of penalty parameter which is obtained from one
of the selection methods discussed in section [Bl

For some of the estimators, we need to calculate the matrix of eigenvectors of X. Given
that X is a non-square matrix in both the large and small sample cases, we decided to
decompose X using the singular value decomposition (SVD). The SVD of X is represented
as:

X =U X V
~—~ N~~~
(TxN) TXT TxN NxN

From this decomposition, we have that U is the T" x T matrix of orthonormalized
. T . . . .
eigenvectors of %, sorted in descending order of each vectors’ eigenvalues. V7 is the

matrix of orthonormalized eigenvectors of XTTX Lastly, the diagonal of ¥ is the vector of

the square root of the eigenvalues of XTTX

In the of Carrasco and Rossi, U = ¢ and diag(X)? = A\2.

4.2 Estimators

Carrasco and Rossi specify multiple different expressions for each of their four estimation
methods. We implemented each formulation of the method to check for accuracy and com-
putational efficiency. We unfortunately found that for some of the estimation methods,
the results were not consistent between the different formulations. Additionally, where
possible, we vectorized the matrix sums to improve computation time. Lastly, no matter
the formulation, for some of the estimators, we were not able to get the regularization
parameters to agree exactly with the tables in the paper by Carrasco and Rossi.

For each estimator we choose the expression that is the most computationally efficient
and whose optimized parameters are the closest to the tables presented by Carrasco and
Rossi. The four estimation methods in the paper we replicated are:

4.2.1 Principal Components/Spectral Cutoff

For this estimator, the implementation we use is:
~ =0 = = 71 =
§= Mgy = W = U (V) Ty

where (I\/ = |:7:D\1 IZJ\Q

|1Zk}

As explained in subsection , U is estimated from the singular value decomposition
of X. The number of vectors k included in ¥ is the regularization parameter that is
optimized for the PC method. We decided to use this implementation as it was the most
straightforward, agreed with the results from Carrasco and Rossi, and was fully vectorized.

4.2.2 Ridge Estimator

For the ridge estimator, the implementation we use is:

@\: M%y = Xgl%bidge = X(SMU + Oé[)_lsxy
where [ is the (N x N) identity matrix.



For this estimator, we were not able to get the estimated o parameter to agree with

the simulation results from Carrasco and Rossi. We also tested the implementation of the
. . . . T
ridge which involves the eigenvectors of %:

min(N,T) ;\2

Mgy= > ’ <y,1@j>TQ@j

)2
o Ajta

However, this implementation yielded estimation results that were further away from
the Carrasco and Rossi values, and took longer to implement, so we used the specification
involving the regularized inverse of S,,.

4.2.3 Landweber Fridman (LF) Estimator

For the LF estimator, we implemented:

min(N,T) (1 — (1 — d/)\?) Ua) .
(v),

/)\\? Y, ¢j T

Here d is the initial parameter in the iterative calculation of the LF estimator. We follow
Carrasco and Rossi and choose d = 0.018/maz(\?).

With the LF estimator, the a values reported by Carrasco and Rossi were mostly
indistiguishable from 0, so it was difficult to verify that we were implementing it correctly.
However our values for the degrees of freedom (DOF) of the LF estimator were not exactly
as reported, but there was no other implementation to try.

4.2.4 Partial Least Squares (PLS) Estimator
For the PLS estimator, we initially implemented the specification:
5= Mgy = X636 = XV (VX'XV) " VX'y
where Vj, = (X’y, (X'X) X'y, ..., (X’X)k_lX’y>
With this implementation, we were not able to get our parameter estimates for k
to agree with the results of Carrasco and Rossi. We looked at how PLS regressions

were implemented in various programming softwares, and came across an implementation
known as the SIMPLS algorithm by De Jong. This algorithm for solving PLS is as follows:

S=X"y
foriel:k
ifi =1, [u,s,v] = svd(S)
if i > 1, [u,s,v] = svd(S — (Ppl:,i — 1(Py[:,i — 1T Pe[s,i — 1)) P[s,i — 1)79))
Tyt — 1] = X Ri[:, i — 1]
XTT [z, — 1]
T Tl — UTTf i — 1]
J= Mgy = X035 = XR(T{Th) ' Ty

Pk[l,i - 1]




Utilising this algorithm both brought our estimated values of k closer to those of
Carrasco and Rossi and was computationally faster, so this is the method we used.

5 Selection Methods

As outlined above the choice of regularization parameter is crucial. We hence implement
selection on three criteria.

> Generalized Cross Validation (GCV):

o Ty = Mgy
& = arg min >
a€hr (1= T tr (M2)

> Mallow’s Criterion:

& = arg min T ||y — My||* + 2627 tr (Mg)
aEAT
where 62 is a consistent estimator of the variance of €. In practice this translates
to the variance of € being taken from the errors of the largest model, or from the
model with all regressors in the case of PCA.

> Leave-one-out Cross Validation (LOO-CV):

L I — 2
& =g min 73 =
Note that for PC and PLS, the trace of M# is equal to the number of factors k.

Additionally, the degrees of freedom (DOF) for each estimator is calculated as the trace
of M%.

6 Simulation Results

We run simulations of the six DGPs outlined in sectionfor a small sample (N = 100,7T =
50) and a large sample (N = 200,7 = 500) and apply all estimators discussed in section
with a/k selected from either GCV or Mallow’s Criterion. In the subsequent tables r
denotes the true number of factors in the underlying simulation. k is the average estimated
number of factors across simulations and equivalently « is the average penalty parameter
across simulations.



(GCV, N = 200, T = 500)

PC PLS Ridge LF
r k k o DOF o DOF
DGP1 4.00 4.87 7.43 0.41 10.98 0.00 0.02
(s.e.) — (1.87) (3.81) (0.16) (0.81) (0.00) (0.01)
DGP 2 50.00 50.93 109.38 1.97 93.09 0.00 0.09
(s.e.) — (2.48) (18.26) (0.06) (0.94) (0.00) (0.00)
DGP 3  5.00 1.86 1.16 0.61 11.15 0.00 0.01
(s.e.) — (2.01) (1.04) (0.24) (0.93) (0.00) (0.00)
DGP 4 5.00 0.88 1.26 18.12 3.87 0.04 0.02
(se)  —  (2.09) (1.58) (5.11) (1.54) (0.04) (0.02)
DGP 5 200.00 0.99 8.30 26.70 12.08 0.03 0.07
s.e.) — (2.42) (9.40) (7.17) (6.81) (0.04) (0.07)
DGP 6 1.00 6.54 1.01 2.36 5.28 0.00 0.40
(s.e.) — (3.28) (0.13) (4.44) (2.04) (0.00) (0.00)

(Mallow, N = 200, 7 = 500)

PC PLS Ridge LF
r k k Q DOF o DOF
DGP1 4.00 14.00 14.00 0.00 14.00 0.00 0.12
s.e.) — (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)
DGP 2 50.00 200.00 200.00 0.00 200.00 0.00 0.09
s.e.) — (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
DGP 3  5.00 15.00 15.00 0.00 15.00  0.00 0.05
(s.e.) — (0.00)  (0.00) (0.00) (0.00) (0.00) (0.00)
DGP 4 5.00 15.00 15.00 0.00 15.00  0.00 0.05
s.e.) — (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
DGP 5 200.00 200.00 200.00 0.00 200.00 0.00 0.15
s.e.) — (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)
DGP 6 1.00 11.00 11.00 0.00 11.00  0.00 0.40
(s.e.) — (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

In general, we obtain similar results as Carrasco and Rossi for PC and PLS even
though our methodology for the latter departs slightly from their paper. For Ridge and
LF the results are mixed. We tried all of the authors expressions for Ridge and while
the implemented one (see section yields sensible results they do not match with
the values the authors report. Similarly when judging the LF estimator on the degrees
of freedoms used we also fail at replicating the results exactly. Given that we directly
translated the authors formulas into code we are unsure where this error arises from.
We take the performance of PC and PLS as indication that both the DGPs and the
regularization choice were implemented correctly.

Generally our findings are in line with Carrasco and Rossi. We see that PC with GCV
correctly estimates the number of factors in both cases where the number of factors is
either large or small (DGP 1 and DGP 2). The performance is better in the large sample.
Contrarily Mallows’ Criterion tends to overestimate the number of factors when the true
number of factors is small (DGP 1, DGP 3, DGP 4 and DGP 6). When the number of
factors is small but only one factor is a relevant predictor of y; (DGP 3) GCV slightly
overestimates the number of relevant factors. Here again Mallows’ Criterion performs
worse and heavily overestimates the number of relevant factors. When eigenvalues decline
gradually (DGP 5) GCV yields a small number of relevant factors both in the large sample
and in the small sample case. Mallow again estimates a greater number of factors. Lastly,
in DGP 6, where the eigenvalues are small in magnitude, both GCV and Mallows Criterion
overestimate the number of relevant factors.



(GCV, N = 100, T = 50)

PC PLS Ridge LF
r k k o DOF o DOF
DGP1 4.00 4.78 4.23 1.25 7.83 0.00 0.15
s.e.) — (2.08) (3.43) (0.56) (1.23) (0.00) (0.02)
DGP 2 50.00 19.50 3.31 0.99 2337 0.00 0.51
(s.e.) - (6.06) (5.23) (0.02) (0.14) (0.00) (0.07)
DGP 3 5.00 1.99 1.16 1.02 9.33 0.00 0.10
(s.e.) — (2.33) (1.07) (0.39) (1.02) (0.00) (0.01)
DGP 4 5.00 1.18 1.34 8.70 5.00 0.02 0.21
(se)  —  (2.61) (1.70) (2.95) (1.73) (0.02) (0.21)
DGP 5 100.00 1.34 3.73 1247  3.99 0.01 0.41
s.e.) - (3.28) (4.14) (4.70) (2.96) (0.02) (0.38)
DGP 6 1.00 3.32 1.17 5.85 2.59 0.10 0.13
(s.e.) — (3.15) (0.91) (3.99) (1.95) (0.08) (0.25)

(Mallow, N = 100,T = 50)

PC PLS Ridge LF
r k k o DOF o DOF
DGP1 400 14.00 1400 0.00 14.00 0.00 0.78
s.e.) — (0.00) (0.00) (0.00) (0.00) (0.00) (0.03)
DGP 2 50.00 25.00 25.00 0.00 25.00 0.00 0.66
s.e.) — (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)
DGP 3 500 15.00 15.00 0.00 15.00 0.00 0.51
(s.e.) - (0.00) (0.00) (0.00) (0.00) (0.00) (0.04)
DGP 4 500 15.00 15.00 0.00 15.00 0.00 0.51
s.e.) — (0.00) (0.00) (0.00) (0.00) (0.00) (0.04)
DGP 5 100.00 25.00 25.00 0.00 25.00 0.00 0.87
s.e.) — (0.00) (0.00) (0.00) (0.00) (0.00) (0.04)
DGP6 1.00 11.00 11.00 0.00 11.00 0.00 1.00
(s.e.) - (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Moving to the predictive power of our estimators we plot the in-sample MSE for all
cases discussed above[| This setting also allows to evaluate the performance of Ridge
and LF. We can see that LF consistently performs worst in terms of in-sample MSE and
that this behaviour is especially pronounced for DGP 1, DGP 2 and DGP 3. Contrarily,
PLS yields a comparably small in-sample MSE across all DGPs and performs especially
well when eigenvalues are small in magnitude. Ridge and PC perform similarly across all
DGPs.

From these simulations we can derive key insights for the subsequent empirical appli-
cation.

> If the underlying factor structure is few factors we expect PC with GCV to yield
good estimates of the true number of factors.

> We expect to over-estimate the number of factors when using Mallows” Criterion.

> In terms of forecasting performance the simulations indicate that PLS consistently
returns the smallest in-sample MSE whereas LF performs worst.

> We do not expect to see pronounced differences in forecasting performance between
PC and Ridge.

'Due to computational limitations we limit the number of simulations for the large sample to 25.
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N = 200, T=500, Simulations = 25
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7 Empirical Application

7.1 Introduction and Data

Building on the long history of machine learning in forecasting macroeconomic variables?|
we use the Federal Reserve Bank’s monthly database (FRED-MD) to apply the estimators
discussed above on real dataf| This database was established for empirical analysis that
requires 'big data’ and hence constitutes an ideal environment to employ the methods dis-
cussed above. We took inspiration from the work of Coulombe et al. but limit ourselves to
PC, Ridge, PLS and LF. The dataset contains 134 monthly US macroeconomic and finan-
cial indicators observed from January 1959 to January 2021. An overview of all variables
is given in the appendix. Following Coulombe et al. we predict three indicators which are
of key economic interest, namely Industrial Production (INDPRO), Unemployment Rate
(UNRATE), and housing starts (HOUST)[]] For each of these variables of interest Y; we
follow Coulombe et al. in defining the forecast objective as

Yern = (1/R)In(Yin/Yr)

where h denotes the number of periods ahead. Given that Y; has been transformed to
be I (1)E], this translates to forecasting the average growth rate over the period [t+1,t+ A
(Stock and Watson 2002)). This allows us to assess the performance of our predictive
methods for further periods ahead. Given the nature of the data we expect the underlying
factor structure to be similar to DGP 1, i.e. few factors. (McCracken and Ng 2016) If
this assumption holds true we expect PC with GCV to correctly estimate the number of
factors.

7.2 Evaluation

We evaluate the performance of our methods on the out of sample MSE. To be able to
compute this metric we split our data into a training and a test set where the former
spans all observations from January 1959 to May 2008 amounting to 80% of the datalff]
Denoting N the number of observations in the test set we calculate the out of sample
MSE as

N
1 .
MSE = — Y; — Y;)?
N?:l( )

where }A/Z = \Tlgpc for PCA and 372 = Xtestgm, m € {R, LF, PLS} for all other models.

2See e.g. Swanson and White [1997, Stock and Watson |1998| or Stock and Watson [2002.

3Unfortunately we were unable to use (1) Gu et al. |2020/ as TSE does not have access to WDRS
returns, (2) Ludvigson and Ng |2009| as only data on the resulting factors is available or (3) Stock and
Watson 2002 as they do not offer any replication data.

4Fortunately McCracken and Ng 2016, the accompanying paper of the dataset, outlines a transfor-
mation method for each variable to achieve stationarity. We apply those transformations in our data
preparation.

5See McCracken and Ng [2016| for details.

6We found the results to be robust for training sizes between 0.6 and 0.9 (not reported), hence we
see the cutoff amid the great recession as not problematic.
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We conduct forecasts for h = {1, 3,9} periods ahead. Subsequently we report results
similar to the simulation framework; we provide tables showing for each combination of
estimator and parameter selection method the estimated penalty parameter/the number
of factors as well as the degrees of freedom and the resulting out of sample MSE for h = 1.
Moreover, we visualize the out of sample MSE to ease comparison across methods and
settings.

7.3 Results and Discussion

From tables [1| to [3| we can immediately see that the estimated factor structure as well as
the chosen penalty parameters are remarkably stable across both selection criteria and
variables of interest. We cautiously take this as indication for the underlying macro data
to indeed exhibit a stable factor structure, i.e. that economic variables are driven by a
set of common underlying factors. (McCracken and Ng 2016) The number of estimated
factors ranges from 9 to 15 depending on the setting and choice of method, which is in
line with the literature. (McCracken and Ng 2016|) Moreover, we can see that Mallows’
Criterion again estimates a larger number of factors than GCV, which is exactly the
behaviour we expected from the simulation results. In terms of forecasting power, we can
see that LF yields the smallest out of sample MSE for h = 1 across all variables of interest.
This is somewhat surprising given its poor performance in the simulation framework when
evaluated on the in-sample MSE. Carrasco and Rossi note, however, that its out-of-sample
forecasting power is high, which validates our findings. Still, the difference to Ridge is
close to negligible.

Table 1: Y; = INDPRO

Method OOS MSE, h =1 alpha/k DOF
LF: GCV 0.000126  0.0001 14.532053
LF: Mallow 0.000126  0.0001 14.532053
PC: GCV 0.000162  13.0000 13.000000
PC: Mallow 0.000162  15.0000 15.000000
PLS: GCV 0.002139  15.0000 15.000000
PLS: Mallow 0.002139  15.0000 15.000000
Ridge: GCV 0.000130  0.1170 20.074885
Ridge: Mallow 0.000130  0.1170 20.074885

Table 2: Y; = UNRATE

Method OOS MSE, h =1 alpha/k DOF
LF: GCV 0.001488  0.0001 14.418940
LF: Mallow 0.001488  0.0001 14.418940
PC: GCV 0.002247  9.0000  9.000000
PC: Mallow 0.002276  15.0000 15.000000
PLS: GCV 0.031782  13.0000 13.000000
PLS: Mallow 0.063822  15.0000 15.000000
Ridge: GCV 0.001779  0.1170 20.008091
Ridge: Mallow 0.001779  0.1170 20.008091

Comparing the performance across variables we make the interesting finding that
the PLS performs very poorly when predicting HOUST. We therefore report for each

12



Table 3: Y, = HOUST

Method OOS MSE, h =1 alpha/k DOF
LF: GCV 0.007627  0.0001 14.441119
LF: Mallow 0.007627  0.0001 14.441119
PC: GCV 0.010409  15.0000 15.000000
PC: Mallow 0.010409  15.0000 15.000000
PLS: GCV 0.329750  11.0000 11.000000
PLS: Mallow 0.238590  15.0000 15.000000
Ridge: GCV 0.008906  0.1170 20.052968
Ridge: Mallow 0.008906  0.1170 20.052968

time horizon also the subset of only INDPRO and UNRATE to increase readability.
Generally PLS yields the highest out of sample MSE while Ridge and LF perform best.
This pattern was not present in the evaluation of simulation results, hence investigating
this further, also with respect to the empirical context, might yield interesting insights.

This is, however, out of scope of this report.

In line with the findings of Coulombe et al. we observe that the performance increases
for further periods ahead. This finding holds true for all estimators and all variables of

interest.
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8 Conclusion

For this report we implemented four dimension-reduction devices (PC, PLS, Ridge and
LF) and evaluated their performance in a simulation framework and on real data. From
the simulation framework we found, in line with Carrasco and Rossi, that PC with GCV
correctly estimates the number of factors when the true number of factors is small. In
conjunction with the literature on macroeconomic forecasting we were able to use this
insight to evaluate estimated number of factors from real world data more cautiously.
In this sense, this report can provide guidance in selecting the appropriate dimension-
reduction device depending on the empirical context the research question is situated
in.
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Appendix

Data Dictionary

Group 1: Output and income

id tcode fred description gsi gsi:description
1 1 5 RPI Real Personal Income M_ 14386177 PI
2 2 5  WB8T75RX1 Real personal income ex transfer receipts M_ 145256755  PI less transfers
3 6 5 INDPRO IP Index M__116460980 IP: total
4 7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies M _ 116460981 IP: products
5 8 5 IPFINAL IP: Final Products (Market Group) M_ 116461268 IP: final prod
6 9 5 IPCONGD IP: Consumer Goods M_ 116460982 IP: cons gds
7 10 5 IPDCONGD IP: Durable Consumer Goods M_ 116460983 IP: cons dble
8 11 5 IPNCONGD IP: Nondurable Consumer Goods M_ 116460988 IP: cons nondble
9 12 5 IPBUSEQ IP: Business Equipment M__116460995 IP: bus egpt
10 13 5 IPMAT IP: Materials M_ 116461002 IP: matls
1 14 5 IPDMAT IP: Durable Materials M_ 116461004 IP: dble matls
12 15 5 IPNMAT IP: Nondurable Materials M_ 116461008 IP: nondble matls
13 16 5 IPMANSICS IP: Manufacturing (SIC) M_ 116461013 IP: mfg
14 17 5 IPB51222¢ IP: Residential Utilities M_ 116461276 IP: res util
15 18 5 IPFUELS IP: Fuels M_ 116461275 IP: fuels
16 19 1 NAPMPI ISM Manufacturing: Production Index M_ 110157212 NAPM prodn
17 20 2  CUMFNS Capacity Utilization: Manufacturing M 116461602 Cap util
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Group 2: Labour market

id tecode  fred description gsi gsizdescription
1 21* 2  HWI Help-Wanted Index for United States Help wanted indx
2 22* 2  HWIURATIO Ratio of Help Wanted/No. Unemployed M 110156531 Help wanted/unemp
3 23 5 CLF160V Civilian Labor Force M_ 110156467 Emp CPS total
4 24 5 CE160V Civilian Employment M_ 110156498 Emp CPS nonag
5 25 2 UNRATE Civilian Unemployment Rate M 110156541 U: all
6 26 2  UEMPMEAN Average Duration of Unemployment (Weeks) M_ 110156528 U: mean duration
7027 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks M_ 110156527 U < 5 wks
8 28 5 UEMP5TO14 Civilians Unemployed for 5-14 Weeks M_ 110156523 U 5-14 wks
9 29 5 UEMP150V Civilians Unemployed - 15 Weeks & Over M 110156524 U 15+ wks
10 30 5 UEMP15T26 Civilians Unemployed for 15-26 Weeks M_ 110156525 U 15-26 wks
11 31 5 UEMP270V Civilians Unemployed for 27 Weeks and Over M_ 110156526 U 27+ wks
12 32% 5 CLAIMSx Initial Claims M_ 15186204 UI claims
13 33 5 PAYEMS All Employees: Total nonfarm M 123109146 Emp: total
14 34 5 USGOOD All Employees: Goods-Producing Industries M_ 123109172 Emp: gds prod
15 35 5 CES1021000001  All Employees: Mining and Logging: Mining M_ 123109244 Emp: mining
16 36 5 USCONS All Employees: Construction M_ 123109331 Emp: const
17 37 5 MANEMP All Employees: Manufacturing M 123109542 Emp: mfg
18 38 5 DMANEMP All Employees: Durable goods M_ 123109573 Emp: dble gds
19 39 5 NDMANEMP All Employees: Nondurable goods M 123110741 Emp: nondbles
20 40 5 SRVPRD All Employees: Service-Providing Industries M 123109193 Emp: services
21 41 5 USTPU All Employees: Trade, Transportation & Utilities M_ 123111543 Emp: TTU
22 42 5 USWTRADE All Employees: Wholesale Trade M_ 123111563 Emp: wholesale
23 43 5 USTRADE All Employees: Retail Trade M_ 123111867 Emp: retail
24 44 5 USFIRE All Employees: Financial Activities M_ 123112777 Emp: FIRE
25 45 5 USGOVT All Employees: Government M_ 123114411 Emp: Govt
26 46 1 CES0600000007 Avg Weekly Hours : Goods-Producing M_ 140687274  Avg hrs
27 47 2  AWOTMAN Avg Weekly Overtime Hours : Manufacturing M_ 123109554  Overtime: mfg
28 48 1 AWHMAN Avg Weekly Hours : Manufacturing M__14386098 Avg hrs: mfg
29 49 1 NAPMEI ISM Manufacturing: Employment Index M_110157206 NAPM empl
30 127 6 CES0600000008 Avg Hourly Earnings : Goods-Producing M_ 123109182 AHE: goods
31 128 6 CES2000000008  Avg Hourly Earnings : Construction M_ 123109341 AHE: const
32 129 6 CES3000000008 Avg Hourly Earnings : Manufacturing M_ 123109552 AHE: mfg
Group 3: Housing
id  tcode fred description gsi gsi:description
1 50 4 HOUST Housing Starts: Total New Privately Owned M_ 110155536  Starts: nonfarm
2 51 4 HOUSTNE Housing Starts, Northeast M_ 110155538  Starts: NE
3 52 4 HOUSTMW Housing Starts, Midwest M_ 110155537  Starts: MW
4 53 4  HOQUSTS Housing Starts, South M 110155543  Starts: South
5 b4 4 HOUSTW Housing Starts, West M_110155544  Starts: West
6 55 4 PERMIT New Private Housing Permits (SAAR) M_ 110155532 BP: total
7 56 4 PERMITNE New Private Housing Permits, Northeast (SAAR) M_ 110155531 BP: NE
8 57 4 PERMITMW New Private Housing Permits, Midwest (SAAR) M_110155530 BP: MW
9 58 4 PERMITS New Private Housing Permits, South (SAAR) M_ 110155533 BP: South
10 59 4  PERMITW New Private Housing Permits, West (SAAR) M_ 110155534 BP: West
Group 4: Consumption, orders and inventories
id tcode fred description gsi gsi:description
1 3 5 DPCERA3MO86SBEA  Real personal consumption expenditures M_ 123008274 Real Consumption
2 4* 5 CMRMTSPLx Real Manu. and Trade Industries Sales M_ 110156998 M&T sales
3 5% 5 RETAILx Retail and Food Services Sales M_ 130439509 Retail sales
4 60 1 NAPM ISM : PMI Composite Index M_ 110157208 PMI
5 61 1 NAPMNOI ISM : New Orders Index M_ 110157210 NAPM new ordrs
6 62 1 NAPMSDI ISM : Supplier Deliveries Index M_110157205 NAPM vendor del
7 63 1  NAPMII ISM : Inventories Index M_ 110157211 NAPM Invent
8 64 5 ACOGNO New Orders for Consumer Goods M _ 14385863 Orders: cons gds
9  65* 5 AMDMNOx New Orders for Durable Goods M 14386110 Orders: dble gds
10 66* 5 ANDENOx New Orders for Nondefense Capital Goods ~M__178554409  Orders: cap gds
11 67* 5 AMDMUOx Unfilled Orders for Durable Goods M_ 14385946 Unf orders: dble
12 68* 5 BUSINVx Total Business Inventories M 15192014 M&T invent
13 69* 2 ISRATIOx Total Business: Inventories to Sales Ratio M 15191529 M&T invent/sa.les
14 130* 2  UMCSENTx Consumer Sentiment Index hhsntn Consumer expect
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Group 5: Money and credit

id tecode  fred description gsi gsi:description
1 70 6 MI1SL M1 Money Stock M 110154984 Ml
2 71 6 M2SL M2 Money Stock M 110154985 M2
3 72 5 M2REAL Real M2 Money Stock M_ 110154985 M2 (real)
4 73 6 BOGMBASE Monetary Base M 110154995 MB
5 T4 6 TOTRESNS Total Reserves of Depository Institutions M__110155011 Reserves tot
6 75 7 NONBORRES Reserves Of Depository Institutions M_ 110155009 Reserves nonbor
776 6 BUSLOANS Commercial and Industrial Loans BUSLOANS C&lI loan plus
8 77 6 REALLN Real Estate Loans at All Commercial Banks BUSLOANS DC&I loans
9 78 6 NONREVSL Total Nonrevolving Credit M_ 110154564 Cons credit
10 79* 2 CONSPI Nonrevolving consumer credit to Personal Income M_ 110154569 Inst cred/PI
11 131 6 MZMSL MZM Money Stock N.A. N.A.
12 132 6 DTCOLNVHFNM  Consumer Motor Vehicle Loans Outstanding N.A. N.A.
13 133 6 DTCTHFNM Total Consumer Loans and Leases Qutstanding N.A. N.A.
14 134 6 INVEST Securities in Bank Credit at All Commercial Banks N.A. N.A.
Group 6: Interest and exchange rates
id tcode fred description gsi gsi:description
1 &4 2 FEDFUNDS Effective Federal Funds Rate M 110155157 Fed Funds
2 85* 2  CP3Mx 3-Month AA Financial Commercial Paper Rate CPF3M Comm paper
3 86 2 TB3MS 3-Month Treasury Bill: M_ 110155165 3 mo T-bill
4 87 2 TB6MS 6-Month Treasury Bill: M 110155166 6 mo T-bill
5 88 2 GS1 1-Year Treasury Rate M_110155168 1 yr T-bond
6 89 2 GSh 5-Year Treasury Rate M_ 110155174 5 yr T-bond
7 90 2 GS10 10-Year Treasury Rate M_ 110155169 10 yr T-bond
& 91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield Aaa bond
9 92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield Baa bond
10 93* 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS CP-FF spread
11 94 1  TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 3 mo-FF spread
12 95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 6 mo-FF spread
13 96 1 TIYFFM 1-Year Treasury C Minus FEDFUNDS 1 yr-FF spread
14 97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS 5 yr-FF spread
15 98 1 TI0YFFM 10-Year Treasury C Minus FEDFUNDS 10 yr-FF spread
16 99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS Aaa-FF spread
17 100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS Baa-FF spread
18 101 5 TWEXAFEGSMTHx Trade Weighted U.S. Dollar Index Ex rate: avg
19 102* 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate M_ 110154768 Ex rate: Switz
20 103* 5 EXJPUSx Japan / U.S. Foreign Exchange Rate M 110154755 Ex rate: Japan
21 104% 5 EXUSUKx U.S. / UK. Foreign Exchange Rate M_110154772 Ex rate: UK
22 105* 5 EXCAUSx Canada / U.S. Foreign Exchange Rate M 110154744 EX rate: Canada
Group 7: Prices
id tecode  fred description gsi gsi:description
1 106 6  WPSFD49207 PPI: Finished Goods M110157517 PPIL: fin gds
2 107 6  WPSFD49502 PPI: Finished Consumer Goods M110157508 PPI: cons gds
3 108 6 WPSID61 PPI: Intermediate Materials M_ 110157527 PPI: int matls
4 109 6 WPSID62 PPI: Crude Materials M_ 110157500 PPI: crude matls
5 110% 6 OILPRICEx Crude Oil, spliced WTI and Cushing M 110157273  Spot market price
6 111 6 PPICMM PPI: Metals and metal products: M_ 110157335 PPIL: nonferrous
7 112 1 NAPMPRI ISM Manufacturing: Prices Index M_ 110157204 NAPM com price
8 113 6 CPIAUCSL CPI : All Items M_ 110157323 CPI-U: all
9 114 6 CPIAPPSL CPI : Apparel M_ 110157299  CPI-U: apparel
10 115 6 CPITRNSL CPI : Transportation M 110157302 CPI-U: transp
11 116 6 CPIMEDSL CPI : Medical Care M_ 110157304 CPI-U: medical
12 117 6 CUSRO000SAC CPI : Commodities M_ 110157314 CPI-U: comm.
13 118 6 CUURO0000SAD CPI : Durables M 110157315 CPI-U: dbles
14 119 6 CUSRO000SAS CPI : Services M 110157325 CPI-U: services
15 120 6 CPIULFSL CPI : All Items Less Food M_ 110157328 CPI-U: ex food
16 121 6 CUURO0000SAOL2 CPI : All items less shelter M_ 110157329 CPI-U: ex shelter
17 122 6 CUSRO000SAOLS CPI : All items less medical care M_ 110157330 CPI-U: ex med
18 123 6 PCEPIL Personal Cons. Expend.: Chain Index gmde PCE defl
19 124 6 DDURRG3MO86SBEA  Personal Cons. Exp: Durable goods gmded PCE defl: dlbes
20 125 6 DNDGRG3MO8S86SBEA  Personal Cons. Exp: Nondurable goods gmden PCE defl: nondble
21 126 6 DSERRG3MOS86SBEA  Personal Cons. Exp: Services gmdcs PCE defl: service
Group 8: Stock market
id tcode fred description gsi gsi:description
1 80* 5  S&P 500 S&P’s Common Stock Price Index: Composite M_ 110155044  S&P 500
2 81* 5 S&P: indust S&P’s Common Stock Price Index: Industrials M_ 110155047  S&P: indust
3 82* 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield S&P div yield
4 83* 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio S&P PE ratio
5 135% 1 VXOCLSx VXO
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