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1 Introduction

This report discusses and presents a replication of a selection of findings from Carrasco
and Rossi as well as an empirical application of the methods. Carrasco and Rossi discusses
in-sample prediction and out-of-sample forecasting in regressions with many exogenous
predictors based on four dimension-reduction devices: principal components (PC), ridge,
Landweber Fridman (LF), and partial least squares (PLS). Each involves a regulariza-
tion or tuning parameter that is selected through generalized cross validation (GCV) or
Mallows Cp. Following Carrasco and Rossi we evaluate these estimators in a monte carlo
simulation framework with 6 different data generating processes (DGPs).

2 Factor Models in Economics

Factor models attempt to explain panels of data in terms of a smaller number of common
factors that apply to each of the variables in the dataset. In the case of high dimensional
data, factor models are a useful tool to reduce the dimensionality of the dataset, making
estimation possible where the dataset would have been rank deficient before. A factor
model on panel data can be represented as

X︸︷︷︸
(T×N)

= F︸︷︷︸
(T×r)

Λ
′︸︷︷︸

(r×N)

+ ξ︸︷︷︸
(T×N)

where X denotes the matrix of observations, F the underlying factors and Λ the
corresponding factor loadings. ξ is an idiosyncratic shock.

Additionally, through dimensionality reduction, factor models can find the most im-
portant variables that effect the outcome variables. For factor models in general, a crucial
part of the estimation procedure is determining the number of factors to use. This is the
context that Carrasco and Rossi is set in. The parameter used to select the number of
factors in a factor model is also known as the regularization parameter. Carrasco and
Rossi run simulations to analyze each of the different dimension reduction devices.

3 Data Generating Process

To study how accurate each estimation method is, Carrasco and Rossi simulate six dif-
ferent data generating processes, both in the large and small sample cases. In the large
sample case, the size of the data set is N = 200 and T = 500. In the small sample case,
the size is N = 100 and T = 50.

For each of the six simulations, Carrasco and Rossi assume these distributions:

F,Λ, ξ ∼ iidN (0, I) (1)

ν ∼ iidN (0, 1)

For each of the DGP’s, X is constructed as in section 2, and y is constructed as:

y︸︷︷︸
(T×1)

= F︸︷︷︸
(T×r)

θ︸︷︷︸
(r×1)

+ ν︸︷︷︸
(T×1)
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. DGP 1 (Few Factors Structure):
θ is the (r × 1) vector of ones, r = 4 and rmax = r + 10

. DGP 2 (Many Factors Structure):
θ is the (r × 1) vector of ones, r = 50 and rmax = min(N, T

2
)

. DGP 3 (Five Factors but only One Relevant):
θ = (1, 01×4), r = 5 and rmax = min(r + 10,min(N, T

2
))

F = [F1, F
′
2]

′
and F × F ′

=


1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 4


y = F̂ θ + ν where F̂ is generated from X equation in DGP 3, and σν = 0.1

. DGP 4 (xt Has a Factor Structure but Unrelated to yt):

θ is a vector of zeros with dimension (r×1). r = 5, rmax = r+ 10. F ×F ′
is defined

as in DGP 3.

. DGP 5 (Eigenvalues Declining Slowly):

θ is an (N × 1) vector of ones. r = N , rmax = min(N, T
2
).

Λ = M � ξ, with ξ ∼ (N ×N) matrix of iidN(0, 1)

M ∼ (N ×N) =


1 1 · · · 1
1
2

1
2
· · · 1

2
...

...
...

...
1
N

1
N
· · · 1

N


. DGP 6 (Near Factor Model):

θ = 1, r = 1, rmax = r + 10, Λ
′
= 1√

N
1r×N

4 Estimation Methods

4.1 Notation

In matrix notation the model is

y =

 y1
y2
...
yT

 , X =

 x′1
x′2
...
x′T

 , ε =

 ε1
ε2
...
εT


where y is a (T × 1) vector, X is a (T × N) matrix of predictors and ε is a (T × 1)

vector. We then write

Sxx =
XTX

T
, Sxy =

XTy

T

and
ŷ = Mα

T y = Xδ̂α
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Moreover we denote as α the choice of penalty parameter which is obtained from one
of the selection methods discussed in section 5.

For some of the estimators, we need to calculate the matrix of eigenvectors of X. Given
that X is a non-square matrix in both the large and small sample cases, we decided to
decompose X using the singular value decomposition (SVD). The SVD of X is represented
as:

X︸︷︷︸
(T×N)

= U︸︷︷︸
T×T

Σ︸︷︷︸
T×N

V︸︷︷︸
N×N

From this decomposition, we have that U is the T × T matrix of orthonormalized
eigenvectors of XXT

T
, sorted in descending order of each vectors’ eigenvalues. V T is the

matrix of orthonormalized eigenvectors of XTX
T

. Lastly, the diagonal of Σ is the vector of

the square root of the eigenvalues of XTX
T

.

In the of Carrasco and Rossi, U = ψ̂ and diag(Σ)2 = λ̂2.

4.2 Estimators

Carrasco and Rossi specify multiple different expressions for each of their four estimation
methods. We implemented each formulation of the method to check for accuracy and com-
putational efficiency. We unfortunately found that for some of the estimation methods,
the results were not consistent between the different formulations. Additionally, where
possible, we vectorized the matrix sums to improve computation time. Lastly, no matter
the formulation, for some of the estimators, we were not able to get the regularization
parameters to agree exactly with the tables in the paper by Carrasco and Rossi.

For each estimator we choose the expression that is the most computationally efficient
and whose optimized parameters are the closest to the tables presented by Carrasco and
Rossi. The four estimation methods in the paper we replicated are:

4.2.1 Principal Components/Spectral Cutoff

For this estimator, the implementation we use is:

ŷ = Mα
T y = Ψ̂δ̂αPC = Ψ̂

(
Ψ̂′Ψ̂

)−1
Ψ̂′y

where Ψ̂ =
[
ψ̂1

∣∣∣ψ̂2

∣∣∣ . . . | ψ̂k]
As explained in subsection 4.1, Ψ̂ is estimated from the singular value decomposition

of X. The number of vectors k included in Ψ̂ is the regularization parameter that is
optimized for the PC method. We decided to use this implementation as it was the most
straightforward, agreed with the results from Carrasco and Rossi, and was fully vectorized.

4.2.2 Ridge Estimator

For the ridge estimator, the implementation we use is:

ŷ = Mα
T y = Xδ̂αRidge = X(Sxx + αI)−1Sxy

where I is the (N ×N) identity matrix.
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For this estimator, we were not able to get the estimated α parameter to agree with
the simulation results from Carrasco and Rossi. We also tested the implementation of the
ridge which involves the eigenvectors of XXT

T
:

Mα
T y =

min(N,T )∑
j=1

λ̂2j

λ̂2j + α

〈
y, ψ̂j

〉
T
ψ̂j

However, this implementation yielded estimation results that were further away from
the Carrasco and Rossi values, and took longer to implement, so we used the specification
involving the regularized inverse of Sxx.

4.2.3 Landweber Fridman (LF) Estimator

For the LF estimator, we implemented:

ŷ = Mα
T y = Xδ̂αLF = X

min(N,T )∑
j=1

(
1−

(
1− dλ̂2j

)1/α)
λ̂2j

〈
y, ψ̂j

〉
T

X ′ψ̂j
T

Here d is the initial parameter in the iterative calculation of the LF estimator. We follow
Carrasco and Rossi and choose d = 0.018/max(λ2).

With the LF estimator, the α values reported by Carrasco and Rossi were mostly
indistiguishable from 0, so it was difficult to verify that we were implementing it correctly.
However our values for the degrees of freedom (DOF) of the LF estimator were not exactly
as reported, but there was no other implementation to try.

4.2.4 Partial Least Squares (PLS) Estimator

For the PLS estimator, we initially implemented the specification:

ŷ = Mα
T y = Xδ̂αPLS = XVk (V ′kX

′XVk)
−1
V ′kX

′y

where Vk =
(
X ′y, (X ′X)X ′y, . . . , (X ′X)

k−1
X ′y

)
With this implementation, we were not able to get our parameter estimates for k

to agree with the results of Carrasco and Rossi. We looked at how PLS regressions
were implemented in various programming softwares, and came across an implementation
known as the SIMPLS algorithm by De Jong. This algorithm for solving PLS is as follows:

S = XTy

for i ∈ 1 : k

if i = 1, [u, s, v] = svd(S)

if i > 1, [u, s, v] = svd(S − (Pk[:, i− 1](Pk[:, i− 1]TPk[:, i− 1])−1Pk[:, i− 1]TS))

Tk[:, i− 1] = XRk[:, i− 1]

Pk[:, i− 1] =
XTTk[:, i− 1]

Tk[:, i− 1]TTk[:, i− 1]

ŷ = Mα
T y = Xδ̂αPLS = XRk(T

T
k Tk)

−1T Tk y
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Utilising this algorithm both brought our estimated values of k closer to those of
Carrasco and Rossi and was computationally faster, so this is the method we used.

5 Selection Methods

As outlined above the choice of regularization parameter is crucial. We hence implement
selection on three criteria.

. Generalized Cross Validation (GCV):

α̂ = arg min
α∈AT

T−1 ‖y −Mα
T y‖

2

(1− T−1 tr (Mα
T ))2

. Mallow’s Criterion:

α̂ = arg min
α∈AT

T−1 ‖y −Mα
T y‖

2 + 2σ̂2
εT
−1 tr (Mα

T )

where σ̂2
ε is a consistent estimator of the variance of ε. In practice this translates

to the variance of ε being taken from the errors of the largest model, or from the
model with all regressors in the case of PCA.

. Leave-one-out Cross Validation (LOO-CV):

α̂ = arg min
α∈AT

1

T

T∑
t=1

(
yi − ŷi,α

1−Mα
T [ii]

)2

Note that for PC and PLS, the trace of Mα
T is equal to the number of factors k.

Additionally, the degrees of freedom (DOF) for each estimator is calculated as the trace
of Mα

T .

6 Simulation Results

We run simulations of the six DGPs outlined in section 3 for a small sample (N = 100, T =
50) and a large sample (N = 200, T = 500) and apply all estimators discussed in section
4.2 with α/k selected from either GCV or Mallow’s Criterion. In the subsequent tables r
denotes the true number of factors in the underlying simulation. k is the average estimated
number of factors across simulations and equivalently α is the average penalty parameter
across simulations.
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(GCV, N = 200, T = 500)

PC PLS Ridge LF
r k k α DOF α DOF

DGP 1 4.00 4.87 7.43 0.41 10.98 0.00 0.02
(s.e.) − (1.87) (3.81) (0.16) (0.81) (0.00) (0.01)

DGP 2 50.00 50.93 109.38 1.97 93.09 0.00 0.09
(s.e.) − (2.48) (18.26) (0.06) (0.94) (0.00) (0.00)

DGP 3 5.00 1.86 1.16 0.61 11.15 0.00 0.01
(s.e.) − (2.01) (1.04) (0.24) (0.93) (0.00) (0.00)

DGP 4 5.00 0.88 1.26 18.12 3.87 0.04 0.02
(s.e.) − (2.09) (1.58) (5.11) (1.54) (0.04) (0.02)

DGP 5 200.00 0.99 8.30 26.70 12.08 0.03 0.07
(s.e.) − (2.42) (9.40) (7.17) (6.81) (0.04) (0.07)

DGP 6 1.00 6.54 1.01 2.36 5.28 0.00 0.40
(s.e.) − (3.28) (0.13) (4.44) (2.04) (0.00) (0.00)

(Mallow, N = 200, T = 500)

PC PLS Ridge LF
r k k α DOF α DOF

DGP 1 4.00 14.00 14.00 0.00 14.00 0.00 0.12
(s.e.) − (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

DGP 2 50.00 200.00 200.00 0.00 200.00 0.00 0.09
(s.e.) − (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

DGP 3 5.00 15.00 15.00 0.00 15.00 0.00 0.05
(s.e.) − (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

DGP 4 5.00 15.00 15.00 0.00 15.00 0.00 0.05
(s.e.) − (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

DGP 5 200.00 200.00 200.00 0.00 200.00 0.00 0.15
(s.e.) − (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

DGP 6 1.00 11.00 11.00 0.00 11.00 0.00 0.40
(s.e.) − (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

In general, we obtain similar results as Carrasco and Rossi for PC and PLS even
though our methodology for the latter departs slightly from their paper. For Ridge and
LF the results are mixed. We tried all of the authors expressions for Ridge and while
the implemented one (see section 4.2.2) yields sensible results they do not match with
the values the authors report. Similarly when judging the LF estimator on the degrees
of freedoms used we also fail at replicating the results exactly. Given that we directly
translated the authors formulas into code we are unsure where this error arises from.
We take the performance of PC and PLS as indication that both the DGPs and the
regularization choice were implemented correctly.

Generally our findings are in line with Carrasco and Rossi. We see that PC with GCV
correctly estimates the number of factors in both cases where the number of factors is
either large or small (DGP 1 and DGP 2). The performance is better in the large sample.
Contrarily Mallows’ Criterion tends to overestimate the number of factors when the true
number of factors is small (DGP 1, DGP 3, DGP 4 and DGP 6). When the number of
factors is small but only one factor is a relevant predictor of yt (DGP 3) GCV slightly
overestimates the number of relevant factors. Here again Mallows’ Criterion performs
worse and heavily overestimates the number of relevant factors. When eigenvalues decline
gradually (DGP 5) GCV yields a small number of relevant factors both in the large sample
and in the small sample case. Mallow again estimates a greater number of factors. Lastly,
in DGP 6, where the eigenvalues are small in magnitude, both GCV and Mallows Criterion
overestimate the number of relevant factors.
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(GCV, N = 100, T = 50)

PC PLS Ridge LF
r k k α DOF α DOF

DGP 1 4.00 4.78 4.23 1.25 7.83 0.00 0.15
(s.e.) − (2.08) (3.43) (0.56) (1.23) (0.00) (0.02)

DGP 2 50.00 19.50 3.31 0.99 23.37 0.00 0.51
(s.e.) − (6.06) (5.23) (0.02) (0.14) (0.00) (0.07)

DGP 3 5.00 1.99 1.16 1.02 9.33 0.00 0.10
(s.e.) − (2.33) (1.07) (0.39) (1.02) (0.00) (0.01)

DGP 4 5.00 1.18 1.34 8.70 5.00 0.02 0.21
(s.e.) − (2.61) (1.70) (2.95) (1.73) (0.02) (0.21)

DGP 5 100.00 1.34 3.73 12.47 3.99 0.01 0.41
(s.e.) − (3.28) (4.14) (4.70) (2.96) (0.02) (0.38)

DGP 6 1.00 3.32 1.17 5.85 2.59 0.10 0.13
(s.e.) − (3.15) (0.91) (3.99) (1.95) (0.08) (0.25)

(Mallow, N = 100, T = 50)

PC PLS Ridge LF
r k k α DOF α DOF

DGP 1 4.00 14.00 14.00 0.00 14.00 0.00 0.78
(s.e.) − (0.00) (0.00) (0.00) (0.00) (0.00) (0.03)

DGP 2 50.00 25.00 25.00 0.00 25.00 0.00 0.66
(s.e.) − (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

DGP 3 5.00 15.00 15.00 0.00 15.00 0.00 0.51
(s.e.) − (0.00) (0.00) (0.00) (0.00) (0.00) (0.04)

DGP 4 5.00 15.00 15.00 0.00 15.00 0.00 0.51
(s.e.) − (0.00) (0.00) (0.00) (0.00) (0.00) (0.04)

DGP 5 100.00 25.00 25.00 0.00 25.00 0.00 0.87
(s.e.) − (0.00) (0.00) (0.00) (0.00) (0.00) (0.04)

DGP 6 1.00 11.00 11.00 0.00 11.00 0.00 1.00
(s.e.) − (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Moving to the predictive power of our estimators we plot the in-sample MSE for all
cases discussed above.1 This setting also allows to evaluate the performance of Ridge
and LF. We can see that LF consistently performs worst in terms of in-sample MSE and
that this behaviour is especially pronounced for DGP 1, DGP 2 and DGP 3. Contrarily,
PLS yields a comparably small in-sample MSE across all DGPs and performs especially
well when eigenvalues are small in magnitude. Ridge and PC perform similarly across all
DGPs.

From these simulations we can derive key insights for the subsequent empirical appli-
cation.

. If the underlying factor structure is few factors we expect PC with GCV to yield
good estimates of the true number of factors.

. We expect to over-estimate the number of factors when using Mallows’ Criterion.

. In terms of forecasting performance the simulations indicate that PLS consistently
returns the smallest in-sample MSE whereas LF performs worst.

. We do not expect to see pronounced differences in forecasting performance between
PC and Ridge.

1Due to computational limitations we limit the number of simulations for the large sample to 25.
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N = 100, T=50, Simulations = 1000

DGP 1 DGP 2

DGP 3 DGP 4

DGP 5 DGP 6

9



N = 200, T=500, Simulations = 25

DGP 1 DGP 2

DGP 3 DGP 4

DGP 5 DGP 6
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7 Empirical Application

7.1 Introduction and Data

Building on the long history of machine learning in forecasting macroeconomic variables2

we use the Federal Reserve Bank’s monthly database (FRED-MD) to apply the estimators
discussed above on real data.3 This database was established for empirical analysis that
requires ’big data’ and hence constitutes an ideal environment to employ the methods dis-
cussed above. We took inspiration from the work of Coulombe et al. but limit ourselves to
PC, Ridge, PLS and LF. The dataset contains 134 monthly US macroeconomic and finan-
cial indicators observed from January 1959 to January 2021. An overview of all variables
is given in the appendix. Following Coulombe et al. we predict three indicators which are
of key economic interest, namely Industrial Production (INDPRO), Unemployment Rate
(UNRATE), and housing starts (HOUST).4 For each of these variables of interest Yt we
follow Coulombe et al. in defining the forecast objective as

yt+h = (1/h)ln(Yt+h/Yt)

where h denotes the number of periods ahead. Given that Yt has been transformed to
be I(1)5, this translates to forecasting the average growth rate over the period [t+1, t+h]
(Stock and Watson 2002). This allows us to assess the performance of our predictive
methods for further periods ahead. Given the nature of the data we expect the underlying
factor structure to be similar to DGP 1, i.e. few factors. (McCracken and Ng 2016) If
this assumption holds true we expect PC with GCV to correctly estimate the number of
factors.

7.2 Evaluation

We evaluate the performance of our methods on the out of sample MSE. To be able to
compute this metric we split our data into a training and a test set where the former
spans all observations from January 1959 to May 2008 amounting to 80% of the data.6

Denoting N the number of observations in the test set we calculate the out of sample
MSE as

MSE =
1

N

N∑
i=1

(Yi − Ŷi)2

where Ŷi = Ψ̂δ̂pc for PCA and Ŷi = Xtestδ̂m,m ∈ {R,LF, PLS} for all other models.

2See e.g. Swanson and White 1997, Stock and Watson 1998 or Stock and Watson 2002.
3Unfortunately we were unable to use (1) Gu et al. 2020 as TSE does not have access to WDRS

returns, (2) Ludvigson and Ng 2009 as only data on the resulting factors is available or (3) Stock and
Watson 2002 as they do not offer any replication data.

4Fortunately McCracken and Ng 2016, the accompanying paper of the dataset, outlines a transfor-
mation method for each variable to achieve stationarity. We apply those transformations in our data
preparation.

5See McCracken and Ng 2016 for details.
6We found the results to be robust for training sizes between 0.6 and 0.9 (not reported), hence we

see the cutoff amid the great recession as not problematic.
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We conduct forecasts for h = {1, 3, 9} periods ahead. Subsequently we report results
similar to the simulation framework; we provide tables showing for each combination of
estimator and parameter selection method the estimated penalty parameter/the number
of factors as well as the degrees of freedom and the resulting out of sample MSE for h = 1.
Moreover, we visualize the out of sample MSE to ease comparison across methods and
settings.

7.3 Results and Discussion

From tables 1 to 3 we can immediately see that the estimated factor structure as well as
the chosen penalty parameters are remarkably stable across both selection criteria and
variables of interest. We cautiously take this as indication for the underlying macro data
to indeed exhibit a stable factor structure, i.e. that economic variables are driven by a
set of common underlying factors. (McCracken and Ng 2016) The number of estimated
factors ranges from 9 to 15 depending on the setting and choice of method, which is in
line with the literature. (McCracken and Ng 2016) Moreover, we can see that Mallows’
Criterion again estimates a larger number of factors than GCV, which is exactly the
behaviour we expected from the simulation results. In terms of forecasting power, we can
see that LF yields the smallest out of sample MSE for h = 1 across all variables of interest.
This is somewhat surprising given its poor performance in the simulation framework when
evaluated on the in-sample MSE. Carrasco and Rossi note, however, that its out-of-sample
forecasting power is high, which validates our findings. Still, the difference to Ridge is
close to negligible.

Table 1: Yt = INDPRO

Method OOS MSE, h = 1 alpha/k DOF

LF: GCV 0.000126 0.0001 14.532053
LF: Mallow 0.000126 0.0001 14.532053
PC: GCV 0.000162 13.0000 13.000000
PC: Mallow 0.000162 15.0000 15.000000
PLS: GCV 0.002139 15.0000 15.000000
PLS: Mallow 0.002139 15.0000 15.000000
Ridge: GCV 0.000130 0.1170 20.074885
Ridge: Mallow 0.000130 0.1170 20.074885

Table 2: Yt = UNRATE

Method OOS MSE, h = 1 alpha/k DOF

LF: GCV 0.001488 0.0001 14.418940
LF: Mallow 0.001488 0.0001 14.418940
PC: GCV 0.002247 9.0000 9.000000
PC: Mallow 0.002276 15.0000 15.000000
PLS: GCV 0.031782 13.0000 13.000000
PLS: Mallow 0.063822 15.0000 15.000000
Ridge: GCV 0.001779 0.1170 20.008091
Ridge: Mallow 0.001779 0.1170 20.008091

Comparing the performance across variables we make the interesting finding that
the PLS performs very poorly when predicting HOUST . We therefore report for each
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Table 3: Yt = HOUST

Method OOS MSE, h = 1 alpha/k DOF

LF: GCV 0.007627 0.0001 14.441119
LF: Mallow 0.007627 0.0001 14.441119
PC: GCV 0.010409 15.0000 15.000000
PC: Mallow 0.010409 15.0000 15.000000
PLS: GCV 0.329750 11.0000 11.000000
PLS: Mallow 0.238590 15.0000 15.000000
Ridge: GCV 0.008906 0.1170 20.052968
Ridge: Mallow 0.008906 0.1170 20.052968

time horizon also the subset of only INDPRO and UNRATE to increase readability.
Generally PLS yields the highest out of sample MSE while Ridge and LF perform best.
This pattern was not present in the evaluation of simulation results, hence investigating
this further, also with respect to the empirical context, might yield interesting insights.
This is, however, out of scope of this report.

In line with the findings of Coulombe et al. we observe that the performance increases
for further periods ahead. This finding holds true for all estimators and all variables of
interest.
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Out of sample MSE, h = 1
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Out of sample MSE, h = 3 Out of sample MSE, h = 9

8 Conclusion

For this report we implemented four dimension-reduction devices (PC, PLS, Ridge and
LF) and evaluated their performance in a simulation framework and on real data. From
the simulation framework we found, in line with Carrasco and Rossi, that PC with GCV
correctly estimates the number of factors when the true number of factors is small. In
conjunction with the literature on macroeconomic forecasting we were able to use this
insight to evaluate estimated number of factors from real world data more cautiously.
In this sense, this report can provide guidance in selecting the appropriate dimension-
reduction device depending on the empirical context the research question is situated
in.
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Appendix

Data Dictionary

Group 1: Output and income
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Group 2: Labour market

Group 3: Housing

Group 4: Consumption, orders and inventories
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Group 5: Money and credit

Group 6: Interest and exchange rates

Group 7: Prices

Group 8: Stock market
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