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Overview

@ |Introduction to Graphical Models
> Important Properties
@ Gaussian Graphical Model
© Time Varying Graphical Lasso (TGLV)

> Altered Optimisation Problem
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© Practical Application of TGVL
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» Changing the penalty function
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Graphical Models

@ Graphical models offer a way to encode conditional dependencies

between p random variables Xi,--- , X, by a graph g
@ A graph consists of a vertex set V = {1,2,--- , p} and an edge set
EcVxV

@ We focus on undirected graphical models, i.e. no distinction between
an edge (s, t) € E and the edge (t, s).
Consider the following example:

Figure: Undirected Graphical Model
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Factorization Property

A graph cligue C ¢ V is a fully-connected subset of the vertex set, i.e
(s,t) € EVs,t € C. (Hastie, Tibshirani, & Wainwright, 2015)

P(A, B, C, D) « ¢(A, B)$(B, C, D)
B(X) = & [ ] oc(x)

ceC
where Z = Y yexo [1eec ¢ (Xc)-

Figure: Maximal Cliques
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Markov Property
Any two subsets S and T are conditionally independent given a separating
subset Y. A random vector X is Markov with respect to g if

Xs 1L X7|Xy for all cut sets S c V.

Figure: Separating Set: {B, C}
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Equivalence of Properties

@ Hammersley-Clifford theorem:

For any strictly positive distribution the distribution of X factorizes
according to the graph g if and only if the random vector X is Markov
with respect to the graph. (Hastie et al., 2015)’

Thitps://sites.stat.washington.edu/mmp/courses/stat535/fall1 0/Handouts/I3-mrf.pdf
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Gaussian Graphical Model

X follows a Gaussian distribution:
X~ N(u,X)
If X is positive definite, distribution has density on RP
f(x | 1, ) = (27) P/3(det ©)'/2~ (1) OC-m)/2

where © = Y is the Precision matrix of the distribution.

Empirical covariance S = —1= 3\, (X — ) (X — p)’

Andrew Boomer & Jacob Pichelmann March 18, 2021 7/26



Gaussian Graphical Model

We can represent a multivariate Gaussian distribution as a graphical
model. Whenever X factorizes according to the graph g we must have

©g = 0 for any pair (s,t) ¢ E. This gives a correspondence between the
zero pattern of © and the edge structure of g.

Zero pattern of 6
1 2 3 4 5
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Estimating the graph structure © ©

@ Suppose X denotes samples from a multivariate Gaussian
distribution with u = 0 and precision matrix © € RP*P

@ We can write the log-likelihood of the multivariate Gaussian as

£(©;X) Z log Po(x;) = log det© — trace(S©)
1_1

@ So why not just estimate by MLE to obtain @ML?

@ A sparse graph increases interpretability, prevents overfitting.
@ |In real world applications often times p > N, then MLE solution does
not exist.
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¢1 Norm Regularisation

Sparsity can be achieved by adding a penalty term to the optimisation
problem. Using the ¢4 norm yields the familiar lasso estimator.

N

© = argmingsg (tr(S@) —log det(©) + 4 ||@||Od,1)

where [|©]|oq 1 is the £1-norm of the off-diagonal entries of ©.

Andrew Boomer & Jacob Pichelmann March 18, 2021 10/26



Challenge: The Network Structure Can Change Over

Time

In many real world settings (e.g. financial markets) the structure of the

complex system changes over time.

T

T2

T3

Time

Figure: Example of Changing Network Structure (Hallac et al., 2017)
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Solution: Optimization on a Chain Graph (TVGL)

— logdet ©, + Tr(5,0;) — logdet ©; + Tr(S5,0,) —logdet O + Tr(SrO7)
+ A1O1floa + All©zlloa,s +AO7llea
[ ] [ ] eee ®
t B ¢(©:-61) ty B¢(©3-02) [ ¢(Or —07-) tr

Figure: (Hallac et al., 2017)

T T
minimize Z Tr(Si©;) — logdet(©;) + A 19illog,1 +,BZ Y (©j—0j1)
i=1 i=2

Oesh |

@ y is the function applied the change in the graph structure
@ fis the penalty parameter applied to sum of ¢ functions
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Choice of y

Q@ A few edges changing at a time - y/(X) = X;;1Xi,l
» Encourages neighboring graphs to be identical
» Best used when only a few nodes are expected to change
@ Smoothly varying over time - y/(X) = 3;; ij
» Causes smooth transition of graphical models
» Severe deviations penalized (sum of squares)
@ Perturbed node - y/(X) = miny.y, yr—x X || VI,
» Allows single node to change all edge relationships at once with

minimal penalty
» Used when looking for single node restructuring
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Optimization Algorithm: ADMM

@ ADMM (Alternating Direction Method of Multipliers) is an general
technique that can be used on any convex optimization problem.

@ ADMM has a couple main advantages compared to standard gradient
descent based methods: (1) Can be applied to nonsmooth functions,
(2) Can be distributed across multiple independent machines

@ To put ADMM into context, we show how it can be used to solve a
generic optimization problem
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Optimization Algorithm: ADMM

General Example

We can take the generic minimization problem
argmin f(x) s.t.xeC
X
And separate it into two functions, f and g, where g is the indicator of C
arg;nin f(x)+9(z) st.x-z=0

The variable z is known as a consensus variable, and the constraint
ensures final convergence between x and z
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Optimization Algorithm: ADMM

Proximal Operators/Proximal Gradient Descent

ADMM optimization used by authors relies on proximal gradient descent.
Proximal gradient descent uses proximal operators, defined as:

y
prox,¢(v) = argmin (f(x) + /—)IIX - V||§)
X
The ADMM iteration based update method is:
: 2
x**1 .= argmin (f(x) + (p/2) HX -7+ yk||2)
X

zk+1 — I—IC (Xk—|—1 + yk)

yk+1 — yk —I—p(Xk—H _zk+1)

lterations stop when y¥ — yk*1 (x — z = 0 constraint satisfied)
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Optimization Algorithm: ADMM

TVGL ADMM Application Overview
For the TVGL, the authors introduce 3 consensus variables: (Zy, Z1, Z2)

@ 2, is the consensus variable for the ©; within |©|o4.1
@ (Z1,2) correspond to (O, ©;_1) within V(©; — ©;_¢)
The augmented lagrangian for the TVGL then is:

—

£,(0.2.0)= > - @)+/l||Z,o||od1+,BZ¢/(Z,2— Zi11)

i=1

)
+(012) Y (€= Zio + Usol[2 - Uiolf?)

;
+ (0/2) Z |©i=1 = Zi—1.1 + Ui 11||,: |Ui- 11||F
=2

+|©i - Zi2 + Ui,2||,2: - ||U’2||I2:)
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Optimization Algorithm: ADMM

TVGL ADMM Application Overview

Finally, the update procedure for the k" iteration in the TVGL is
(a) ©K*" = argminL, (©, Z¥, U¥) (b)

©es? |

I ZK-H
Zkt1 = Z%'H = argmian(@k+1,Z, Uk) (c)

i ;Zé +1 20,21,2>

» U£+1 Ué( k 1@k+1 —kZ(:)‘+1 K-+1

+ + +

S O e il R e

| U Uy o5',....e5") - Z,
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TVGL Application: Data

@ Replication of authors’ TVGL application to stock price data

@ Panel of six stocks (labeled in graphs), comprising trading days from
13/01/2010 to 19/03/2010

@ Authors application focuses on changes in the network structure of
Apple in the graph over time
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Static LASSO

Static Lasso Perturbed Node Lambda 0.18
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TVGL (Perturbed Node)

Precision Matrix: 2010-01-13

0.86 -0.38

INTC iy
S -0.045

FDX

MSFT

Andrew Boomer & Jacob Pichelmann

AMZN 0 0
-0.013

-0.57 -0.045

0.013 0
0.88 -0.21 (1115
<021 1) 0
(1=

0.49

AMZN INTC BA

High Dimensional Models

] -5
] -4

0.49 3

[= TR B ¥

- 03

0.2

0.1

0.0

March 18, 2021

21/26



TVGL (Smoothly Varying)

Precision Matrix: 2010-01-13
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Changing ¥

Temporal Deviation of Precision Matrix

Temporal Deviation Lambda=0.18 Beta=13
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Figure: Temporal Deviation Psi Comparison
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Changing ¥

Temporal Deviation of Precision Matrix

Temporal Deviation Lambda=0.18 Beta=13 Expanded Time
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Figure: Temporal Deviation Psi Comparison Expanded Timespan
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Changing ¥

Temporal Deviation of Precision Matrix

Temporal Deviation Lambda=0.18 Beta=13 Expanded Stocks
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Figure: Temporal Deviation Psi Comparison Expanded Stock Set
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