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Graphical Models
Graphical models offer a way to encode conditional dependencies
between p random variables X1, · · · ,Xp by a graph g
A graph consists of a vertex set V = {1, 2, · · · , p} and an edge set
E ⊂ V × V
We focus on undirected graphical models, i.e. no distinction between
an edge (s, t) ∈ E and the edge (t , s).

Consider the following example:

Figure: Undirected Graphical Model
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Factorization Property
A graph clique C ⊆ V is a fully-connected subset of the vertex set, i.e.
(s, t) ∈ E∀s, t ∈ C. (Hastie, Tibshirani, & Wainwright, 2015)

P(A ,B ,C ,D) ∝ φ(A ,B)φ(B ,C ,D)

P(X) =
1
Z

∏
c∈C

φc(xc)

where Z =
∑

x∈Xp
∏

c∈C φc (xc).

Figure: Maximal Cliques
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Markov Property
Any two subsets S and T are conditionally independent given a separating
subset Y . A random vector X is Markov with respect to g if

XS y XT |XY for all cut sets S ⊂ V .

Figure: Separating Set: {B ,C}
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Equivalence of Properties

Hammersley-Clifford theorem:

For any strictly positive distribution the distribution of X factorizes
according to the graph g if and only if the random vector X is Markov

with respect to the graph. (Hastie et al., 2015)1

1https://sites.stat.washington.edu/mmp/courses/stat535/fall10/Handouts/l3-mrf.pdf
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Gaussian Graphical Model

X follows a Gaussian distribution:

X ∼ N(µ,Σ)

If Σ is positive definite, distribution has density on Rp

f(x | µ,Σ) = (2π)−p/2(det Θ)1/2e−(x−µ)T Θ(x−µ)/2

where Θ = Σ−1 is the Precision matrix of the distribution.

Empirical covariance S = 1
n−1

∑n
i=1 (xi − µ) (xi − µ)′
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Gaussian Graphical Model

We can represent a multivariate Gaussian distribution as a graphical
model. Whenever X factorizes according to the graph g we must have
Θst = 0 for any pair (s, t) < E. This gives a correspondence between the
zero pattern of Θ and the edge structure of g.
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Estimating the graph structure⇔ Θ

Suppose X denotes samples from a multivariate Gaussian
distribution with µ = 0 and precision matrix Θ ∈ Rp×p

We can write the log-likelihood of the multivariate Gaussian as

L(Θ; X) =
1
N

N∑
i=1

log PΘ(xi) = log detΘ − trace(SΘ)

So why not just estimate by MLE to obtain Θ̂ML ?
1 A sparse graph increases interpretability, prevents overfitting.
2 In real world applications often times p > N, then MLE solution does

not exist.
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`1 Norm Regularisation

Sparsity can be achieved by adding a penalty term to the optimisation
problem. Using the `1 norm yields the familiar lasso estimator.

Θ̂ = argminΘ≥0

(
tr(SΘ) − log det(Θ) + λ ‖Θ‖od,1

)
where ‖Θ‖od,1 is the `1-norm of the off-diagonal entries of Θ.
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Challenge: The Network Structure Can Change Over
Time

In many real world settings (e.g. financial markets) the structure of the
complex system changes over time.

Figure: Example of Changing Network Structure (Hallac et al., 2017)
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Solution: Optimization on a Chain Graph (TVGL)

Figure: (Hallac et al., 2017)

minimize
Θ∈Sp

++

T∑
i=1

Tr(SiΘi) − logdet(Θi) + λ ‖Θi‖od,1 + β

T∑
i=2

ψ (Θi −Θi−1)

ψ is the function applied the change in the graph structure

β is the penalty parameter applied to sum of ψ functions
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Choice of ψ

1 A few edges changing at a time - ψ(X) =
∑

i,j |Xi,j |

I Encourages neighboring graphs to be identical
I Best used when only a few nodes are expected to change

2 Smoothly varying over time - ψ(X) =
∑

i,j X2
i,j

I Causes smooth transition of graphical models
I Severe deviations penalized (sum of squares)

3 Perturbed node - ψ(X) = minV :V+VT =X
∑

j

∥∥∥[V ]j
∥∥∥

2
I Allows single node to change all edge relationships at once with

minimal penalty
I Used when looking for single node restructuring
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Optimization Algorithm: ADMM

ADMM (Alternating Direction Method of Multipliers) is an general
technique that can be used on any convex optimization problem.

ADMM has a couple main advantages compared to standard gradient
descent based methods: (1) Can be applied to nonsmooth functions,
(2) Can be distributed across multiple independent machines

To put ADMM into context, we show how it can be used to solve a
generic optimization problem
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Optimization Algorithm: ADMM
General Example

We can take the generic minimization problem

argmin
x

f(x) s.t . x ∈ C

And separate it into two functions, f and g, where g is the indicator of C

argmin
x

f(x) + g(z) s.t . x − z = 0

The variable z is known as a consensus variable, and the constraint
ensures final convergence between x and z
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Optimization Algorithm: ADMM
Proximal Operators/Proximal Gradient Descent

ADMM optimization used by authors relies on proximal gradient descent.
Proximal gradient descent uses proximal operators, defined as:

proxρf (v) = argmin
x

(
f(x) +

1
ρ
‖x − v‖22

)
The ADMM iteration based update method is:

xk+1 := argmin
x

(
f(x) + (ρ/2)

∥∥∥x − zk + yk
∥∥∥2

2

)
zk+1 := ΠC

(
xk+1 + yk

)
yk+1 := yk + ρ(xk+1 − zk+1)

Iterations stop when yk −→ yk+1 (x − z = 0 constraint satisfied)
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Optimization Algorithm: ADMM
TVGL ADMM Application Overview
For the TVGL, the authors introduce 3 consensus variables: (Z0,Z1,Z2)

1 Z0 is the consensus variable for the Θi within |Θi |od,1
2 (Z1,Z2) correspond to (Θi ,Θi−1) within Ψ(Θi −Θi−1)

The augmented lagrangian for the TVGL then is:

Lρ(Θ,Z ,U) =
T∑

i=1

−l (Θi) + λ
∥∥∥Zi,0

∥∥∥
od, 1 + β

T∑
i=2

ψ (Zi,2 − Zi−1,1)

+ (ρ/2)
T∑

i=1

(∥∥∥Θi − Zi,0 + Ui,0
∥∥∥2

F −
∥∥∥Ui,0

∥∥∥2
F

)
+ (ρ/2)

T∑
i=2

(∥∥∥Θi−1 − Zi−1,1 + Ui−1,1
∥∥∥2

F −
∥∥∥Ui−1,1

∥∥∥2
F

+
∥∥∥Θi − Zi,2 + Ui,2

∥∥∥2
F −

∥∥∥Ui,2
∥∥∥2

F

)
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Optimization Algorithm: ADMM
TVGL ADMM Application Overview

Finally, the update procedure for the k th iteration in the TVGL is
(a) Θk+1 := argmin

Θ∈Sp
++

Lρ

(
Θ,Zk ,Uk

)
(b)

Zk+1 =


Zk+1

0
Zk+1

1
Zk+1

2

 := argmin
Z0,Z1,Z2

Lρ

(
Θk+1,Z ,Uk

)
(c)

Uk+1 =


Uk+1

0
Uk+1

1
Uk+1

2

 :=

 Uk
0

Uk
1

Uk
2

 +


Θk+1 − Zk+1

0(
Θk+1

1+1 , . . . ,Θ
k+1
T−1

)
− Zk+1

1(
Θk+1

2 , . . . ,Θk+1
T

)
− Zk+1

2
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TVGL Application: Data

Replication of authors’ TVGL application to stock price data

Panel of six stocks (labeled in graphs), comprising trading days from
13/01/2010 to 19/03/2010

Authors application focuses on changes in the network structure of
Apple in the graph over time
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Static LASSO
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TVGL (Perturbed Node)
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TVGL (Smoothly Varying)
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Changing ψ
Temporal Deviation of Precision Matrix

Figure: Temporal Deviation Psi Comparison
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Changing ψ
Temporal Deviation of Precision Matrix

Figure: Temporal Deviation Psi Comparison Expanded Timespan
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Changing ψ
Temporal Deviation of Precision Matrix

Figure: Temporal Deviation Psi Comparison Expanded Stock Set
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