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Abstract

Measuring resilience is a key step in understanding why some systems suffer

more from shocks than others. Resilience relevant for trade can be defined as

a trade flow’s ability to recover from a shock or reorient to a more desirable

state. I show how both these dimensions can be parametrized and measured in a

Multiple Regime Smooth Autoregressive Transition model. I test the limitations

of this novel approach in a simulation framework and list caveats to consider

in practical application. Lastly, I demonstrate the approach in two empirical

applications, measuring the resilience of German car exports and US consumer

electronics imports. Descriptive evidence suggests that well-established trade

relationships correlate positively with trade flow resilience.
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1 Introduction

Recent crises, such as the Great Recession and the Covid-19 pandemic, direly high-

lighted the importance of resilient economic systems in mitigating welfare reducing

effects of shocks. While some regions are able to withstand crises relatively unscathed,

others suffer greatly. Unsurprisingly, researchers are increasingly interested in under-

standing the causes of locally differing responses to shocks and resilience starts to

become an objective for policy making (Sánchez, De Serres, Gori, Hermansen, & Röhn,

2017). This has fueled a rich discussion on how to formalize and define the concept of

economic resilience. Still, while many efforts were made to unify the theoretical con-

cept of resilience, methods to measure resilience are scarce. I seek to contribute to this

discussion by outlining how resilience can be parametrized and measured in a Smooth

Transition Autoregressive (STAR) model framework.

Generally, this novel approach can be used for any economic variable that is observed

as a univariate time series. I focus, however, on trade flows. Economic resilience

naturally extends to trade, as trade comprises a multitude of economic transactions

that are integral for the modern economy. On the macro level, resilient trade flows are

important to guarantee provision of goods at the desired level. On the micro level, firms

and logistics providers strive to build dynamic supply chains in order to work effectively

and efficiently. The risk management literature highlights the value of building resilient

supply chains in mitigating costs stemming from the inability to adapt to unforeseen

shocks (Christopher & Peck, 2004). Indeed, Ponomarov and Holcomb (2009) describe

the ability of supply chains to “incorporate event readiness, provide an efficient and

effective response, and be capable of recovering to their original state or even better

post the disruptive event” as the essence of supply chain resiliency. Disruptive events

refer to any type of realized risk, such as the loss of a critical supplier, a major fire at

a manufacturing plant, or an act of terrorism (Ponomarov & Holcomb, 2009).

An important trend when analyzing resilience is the growing interconnectedness

of both trade relationships and economic regions in general. Naturally in a system
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of many interlinked entities a shock can propagate more easily, making many entities

more susceptible to shocks than they have been historically (Ringwood, Watson, &

Lewin, 2019). The Covid-19 crisis added fuel to this debate, with even the World

Economic Forum recommending to “aggressively evaluate near-shore options to shorten

supply chains and increase proximity to customers” (Betti & Hong, 2020). However,

the evidence whether complex global value chains were more severely affected is not

clear cut (Evenett, 2020). This underlines the importance of a well defined measure for

resilience to properly identify determinants of resilience.

Despite the growing interest, there is currently no universally agreed upon definition

of economic resilience (Sensier, Bristow, & Healy, 2016). Still, from the many efforts

of defining economic resilience, a common denominator can be distilled. A precise

definition of resilience is a key step in operationalizing the concept and prevents from

using the term as a vacuous and ambiguous buzzword (Rose, 2004). In section 2 I

provide an extensive review of the definitions of resilience in the academic literature.

While the roots of the concept come from psychological and ecological research, I focus

on economic and supply chain resilience. I argue that this does not reduce the generality

of the resulting definition, as said roots are acknowledged in all papers considered. I

continue in section 3 with an overview of existing measurements of resilience and a

discussion of their shortcomings. Section 4 then presents the general STAR model

framework. Section 5 discusses the reasoning and implications of applying a time series

approach to trade data and section 6 outlines how resilience can be measured in a STAR

framework, including examples of processes exhibiting different levels of resilience. The

detailed steps of model selection are then presented in section 7 which naturally leads to

a discussion of model estimation in section 8. To evaluate whether or not the outlined

framework is successful in measuring resilience I evaluate the procedure in a simulation

setting in section 9. Lastly, I present two empirical applications of the novel estimation

framework in section 10.

In this thesis I show how the dimensions of resilience relevant for trade can suc-

cessfully be parametrized in a STAR model framework. This approach has multiple
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advantages. First, for each dimension the underlying theoretical definition can clearly

be matched to a parameter, avoiding overlap in measurement. Second, and contrary to

existing measures, the resulting indicator does not depend on any subjective weighting

of variables. It can therefore serve as the first step in thoroughly analyzing determi-

nants of resilience. Third, the parametrization of resilience dimensions allows for a

rigorous evaluation of estimator performance, highlighting limitations of the procedure.

Knowledge of said limitations consequently guides cautious practical application of the

outlined methods.

2 Defining Resilience

I employ the concise definition of Christopher and Peck (2004) and refer to resilience

as “the ability of a system to return to its original state or move to a new, more

desirable state after being disturbed”. This definition was established in the context of

supply chain resilience, but matches the dimensions commonly attributed to economic

resilience. Generally, the concepts associated with resilience in the literature can be

summarized as robustness, recovery and reorientation (Martin, 2012).

Robustness describes a system’s ability to withstand a shock. An example of such

behavior is the security of food supply during the first wave of Covid-19. In a system

exhibiting strong robustness no food shortages should occur amid a global lockdown

(Hobbs, 2020). There is currently disagreement as to whether robustness should be

treated as a dimension of resilience or analyzed as a stand-alone concept (Han & Goetz,

2015). I side with authors distinguishing robustness from resilience1. Evenett (2020)

argues that robustness has to be considered as a separate concept to derive sensible

policy implications in building resilient global value chains. Indeed, measures that

foster robustness (for example near shoring) might stand in contrast to resilience, as

they limit the dynamic response capability of systems. On a similar note, I argue that

robustness is prone to be confused with rigidity, especially in the context of trade. If

1See for example Christopher and Peck (2004) or Ponomarov and Holcomb (2009).
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the shock manifests as a change in demand, a resilient process should be able to adapt

accordingly. If the trade flow does not exhibit any change this might indicate a lack of

flexibility and indeed result in a welfare loss, as the amount of traded goods does not

match the demand. In this thesis I therefore do not consider robustness as an element

of resilience and argue that resilience is a two dimensional concept, entailing recovery

and reorientation.

Recovery refers to a system’s capability of returning to its pre-shock state following

a shock (Ringwood et al., 2019). This dimension has enjoyed popularity in economic

analyses of resilience, as it is in line with the idea of stability of a system near its equilib-

rium and self-correcting forces driving the process towards said equilibrium (Fingleton,

Garretsen, & Martin, 2012). Some authors, e.g. Foster (2007) and Hill, Wial and

Wolman (2008), build their definition of resilience fully on the recovery dimension. Re-

covery is hence captured by the speed at which a series returns to its equilibrium path

after a shock. A more resilient process is therefore one that recovers faster. As an

illustrative example of a shock where recovery is the main focus one can imagine a

container ship getting stuck in the Suez canal. A resilient trade flow is one which reacts

to and recovers from the resulting supply bottleneck quickly.

Reorientation places emphasis on a system’s ability to adapt and evolve in response

to change (Martin, 2012). This dimension accounts for the dynamic behavior that is

expected from a resilient system. Ponomarov and Holcomb (2009) argue that “a resilient

supply chain must be adaptable, as the desired state in many cases is different from

the original one”. Similarly, Christopher and Peck (2004) note that resilient processes

are flexible, agile and able to change quickly. The importance of reorientation is clearly

highlighted in periods of paradigm shift, such as the Covid-19 crisis, Brexit or the

China-US trade war. In all those instances existing global value chains had to adapt

to new laws, changes in costs and a multitude of other challenges, as the rules of trade

shifted profoundly. I therefore define reorientation as the speed with which a series

moves to a new equilibrium.

In summary, I argue that a definition of resilience that is applicable to trade is
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two-dimensional and entails recovery and reorientation. This matches the definition of

resilience proposed by Christopher and Peck (2004) as both the return to its original

state as well as the possible transition to a new, better state are accounted for.

3 Measuring Resilience

The handful of existing measures of resilience can be categorized into two approaches.

One uses regional properties or characteristics as determinants of resilience. For in-

stance, Briguglio et al. (2009) develop an economic resilience index based on the ad-

equacy of policy in areas such as macroeconomic stability and microeconomic market

efficiency. Lu and Dudensing (2015) propose a resilience measure based on changes in

sales by industrial sector following Hurricane Ike (September 2008). Similarly, Kahsai

et al. (2015) create an index on West Virginia county level based on physical and

human resources, employment and income diversity, entrepreneurial activity and scale

and proximity. Ringwood et al. (2019) argue that “one advantage of using an index

of regional characteristics is that it captures the unique and complex nature of each

region”. Still, a major drawback is that the choice of variables and their respective

weighting is clearly subjective (Briguglio, Cordina, Farrugia, & Vella, 2009; Ringwood

et al., 2019). Sensier et al. (2016) heavily criticize this approach by arguing that ex-

isting indices remain largely unproven and past indices failed to predict resilience of

economic systems (Briguglio et al., 2009). They emphasize that before deciding on fac-

tors that determine resilience researchers first need to properly identify which systems

have proven to be resilient to shocks and which have not.

The other approach is to analyze changes in representative measures in response to a

shock. The framework proposed in this thesis falls into this category. Another example

is Ringwood et al. (2019), which takes the deviations from an expected (forecasted)

trend as an indication of resilience. I argue, however, that this measurement in fact

captures robustness. A robust system does not react to a shock, hence the deviation

from the expected trend will be small. For the reasons outlined in section 2 robustness
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should be separately analyzed. Other examples include Martin (2012) and Fingleton

et al. (2012) which both analyze the structural composition of employment changes to

investigate regional resilience. Their analyses, however, do not provide holistic measures

of resilience, as they focus on sub-dimensions, i.e. reorientation (Martin, 2012).

My approach differs from the literature insofar as I propose to use a model frame-

work in which recovery and reorientation can be parametrized. The advantage of this

approach is that resilience can be measured holistically as both dimensions of resilience

are jointly accounted for. Moreover, the resulting measure does not depend on any

subjective weighting of determinants of resilience. On the contrary, given the objec-

tive nature of the resulting measure it can be used to further analyze determinants of

resilience.

4 Smooth Transition Autoregressive (STAR) Mod-

els

Both dimensions of resilience can be parameterized in a Smooth Transition Autoregres-

sive (STAR) model. STAR models belong to the family of regime-switching models,

which are commonly used to model non-linearities in time series (Van Dijk & Franses,

1999). A regime is simply defined as a period in which the process takes on different

parameter values (Teräsvirta, 1994). They typically consist of a set of linear models,

where at each point in time, depending on the regime at that time, either only one

model or a linear combination of multiple models dictates the series’ evolution. A

two-regime STAR model for a univariate time series yt can be written as

yt = φ′1xt × (1− F (st, γ, c)) + φ′2xt × F (st, γ, c) + εt (1)

where xt = (1, x̃′t)
′ with x̃t = (yt−1, . . . , yt−p)

′ and φi = (φi,0, φi,1, . . . , φi,p), i = 1, 2.

εt follows a white noise process with mean zero and variance σ2. Here F (.) denotes

the so-called transition function which is a continuous function bounded between zero
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and one that governs the transition between regimes. Throughout this thesis I use the

logistic function as the transition function, which is a common choice in the literature

and yields the Logistic STAR (LSTAR) model (Dijk, Teräsvirta, & Franses, 2002).2

The transition function is hence

F (st, γ, c) = (1 + exp(−γ(st − c)))−1, γ > 0 (2)

where both γ and c are scalars and st is the transition variable. The logistic function

monotonically increases from 0 to 1 as st increases and F (c, γ, c) = 0.5.

4.1 Regime Switches

I use this basic two-regime LSTAR model to describe the general functionality of STAR

models. At any point in time the evolution of yt is determined by a weighted average of

two different autoregressive (AR) models. The weights depend on the transition variable

st, i.e. whether or not st crosses the threshold c. Large values of st result in a weight

approximately equal to one, whereas small values of st yield a weight approximately

equal to zero. The choice of st is an important step in model selection and is covered in

greater detail in section 7. Generally, st can be an endogenous or an exogenous scalar

variable. Depending on the empirical setting, researchers might be able to identify

variables that induce a regime shift. As an illustrative example, assume that trade

of pharmaceutical products follows different regimes depending on whether or not a

pandemic is taking place. In this case a sensible choice for st could be the number of

virus cases, as it indicates the state of the pandemic. In this thesis, however, I only

consider an endogenous variable as the transition variable, namely lagged values of yt.

This is a common choice of transition variable and builds on the idea that the weights

2For certain cases where one expects a non linear relationship between transition variable and series

behavior, the literature recommends using the exponential function as transition function, yielding the

so-called Exponential STAR (ESTAR) model. For a discussion see Teräsvirta (1994) or Van Dijk et

al. (2002).
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depend on the recent history of yt. I argue that using yt−d allows for a more general

measurement of resilience which consequently yields better comparability across series.

If the weights depend on yt−d this implies that all shocks that influence the series’

behavior enter through εt. In other words, if εt takes on an extreme value because

of any kind of trade shock, yt−d will eventually cross c and the model transitions to a

different regime. Consequently, the model can capture all kinds of regime shifts, as long

as yt−d is affected. Therefore the procedure can be used for any kind of empirical series

and no prior selection on regime shift periods (and their respective st) is necessary. The

speed at which these weights change as st increases is governed by γ. The higher γ,

the faster this change occurs. This is easily illustrated when considering the extreme

cases of γ → 0 and γ → ∞. If γ → 0 the weights become constant and equal to 0.5,

resulting in a linear model. Contrarily if γ →∞ the logistic function approaches a unit

step function, equalling 0 if st < c and 1 if st > c.

4.2 Extending STAR to Multiple Regimes (MRSTAR)

Following Van Dijk, Teräsvirta and Franses (2002), McAleer and Medeiros (2008) and

Hillebrand, Medeiros and Xu (2010) I extend the basic STAR model to allow for multiple

regimes. This greatly increases the model’s flexibility as it relaxes the assumption

that the series’ behavior can be described by only two regimes. I start by rewriting

equation (1) as

yt = φ′1xt + (φ2 − φ1)′xt × F (st, γ, c) + εt. (3)

I can now add another nonlinear component to obtain a 3-regime STAR model.

yt = φ′1xt + (φ2 − φ1)′xt × F1(st, γ1, c1) + (φ3 − φ2)′xt × F2(st, γ2, c2) + εt (4)

Note that the subscripts added to the transition functions indicate that they are

evaluated for different values of γ and c. A MRSTAR model with M regimes can hence
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be written as

yt = φ′1xt + (φ2 − φ1)′xt × F1(st, γ1, c1) + . . .

+ (φM − φM−1)′xt × FM−1(st, γM−1, cM−1) + εt

(5)

with M − 1 smoothness parameters γ1, . . . , γM−1 and M − 1 location parameters

c1, . . . , cM−1. It is hence implicitly assumed that the regimes can be characterized by a

single transition variable st.
3 To illustrate how regimes change in this model consider

a 4 regime model with c1 < c2 < c3. In this case the autoregressive parameters change

smoothly from φ1 to φ2 to φ3 and finally to φ4 for increasing values of st. This behavior

is graphically shown in figure figure 17 in the appendix, where also γ1 = γ2 = γ3 to

highlight the smooth transition from one regime to the other.

5 A Time Series Model of Trade

By using the MRSTAR framework to model trade flows I implicitly assume that within

each regime trade can be modelled as an autoregressive process of order p. This departs

from the literature of modelling trade flows insofar as typically gravity models are used

to model trade volumes where a set of explanatory variables (e.g. distance and GDP)

determines trade between two entities. Compared to a time series approach this has

the advantage that it can be theoretically motivated.4 Still, efforts have been made to

use autoregressive models to forecast import and export volumes and were generally

found to be successful (Harvey & Todd, 1983; Keck, Raubold, & Truppia, 2010). It is

important to keep in mind, however, that this type of modelling is only motivated by

its goodness of fit and predictive power and hence results in a reduced form measure.

3Alternatively the basic STAR model can also be extended to a setting where regimes are determined

by multiple transition variables st = (s1,t, . . . , sj,t), where j is the number of transition variables and

j = M − 1. This is achieved by nesting multiple two regime STAR models, as proposed by Van Dijk

and Franses (1999).
4For an in-depth discussion see the seminal work of Tinbergen (1962).
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As the MRSTAR framework allows for additional exogenous explanatory variables in

xt an avenue for further research could be to write each regime as a gravity equation by

including regressors such as GDP and distance. As such an extension of the MRSTAR

framework would require an in-depth discussion of its theoretical properties and the

additional autoregressive term in the gravity equation, this is out of scope for this thesis.

Instead, I assume that within each regime trade follows an AR(p) process. Usually

selecting p is a step in model selection where the standard Box-Jenkins procedure is

applied as if the correct model were linear (Teräsvirta, 1994). In this thesis, however,

I assume p = 1 for all series considered. The reasoning behind this choice is twofold.

First, the literature has identified an AR(1) model as a good fit, which is also confirmed

by the empirical data considered in this thesis (Keck et al., 2010).5 Second, with p = 1

recovery can directly be linked to the model’s autoregressive parameters, as outlined

below. In case of p > 1 one would need to add an additional step to the procedure,

namely the computation of the impulse response function (IRF) of the MRSTAR model.

A discussion of the IRF in the MRSTAR framework is given in Van Dijk et al. (2002).

6 Resilience in the STAR framework

I propose to measure resilience as follows. First, a series’ capability of recovering quickly

can be measured by evaluating the process’ persistence. A persistent series is one

in which an infinitesimally small shock influences future observations for a long time

(Hamilton, 1994). For any shock εt persistence hence indicates how long εt influences

yj where t < j < T . As recovery refers to a resilient system’s ability to return to its

pre-shock path quickly, I argue that this can be translated to a short influence of εt on

5Following Box-Jenkins and selecting p that yields minimal AIC for all trade flows considered in

section 10 yields p̄ ≈ 0.84.
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yj and hence to persistence.6 Given that the STAR model is a linear combination of

AR models, persistence can be evaluated from the AR coefficients. Large values of the

weighted average across regimes of (φ1,1, . . . , φM,1) indicate strong persistence (weak

recovery) whereas small values of the weighted average of (φ1,1, . . . , φM,1) signal weak

persistence (strong recovery). Second, γ can be used as a measure for reorientation,

as this parameter dictates the speed at which a series adjusts to a different regime. A

large (small) value of γ hence signals strong (weak) reorientation.

To further illustrate how resilience can be modelled and parametrized in a STAR frame-

work I present examples of weaker recovery and weaker reorientation relative to a base-

line model.

6.1 The Baseline Model

I simulate 100 observations from a basic 2-regime LSTAR model with parameters φ1 =

(1, 0.1),φ2 = (5, 0.3), c = 4.5, γ = 0.9 and st = yt−1. The resulting series is displayed in

figure 1. In this figure the shape indicates the dominant regime at each point in time

t, where regime 1 if F (st, γ, c) < 0.5 and regime 2 if F (st, γ, c) ≥ 0.5. The series first

follows regime 1 and oscillates around the intercept value of 1 with low autoregressive

dependence. After being prompted by a sequence of large εt, resulting in st crossing c,

it moves to regime 2. The second regime is clearly identified by a larger intercept and

stronger autocorrelation. In the end the series moves back to regime 1. A real world

example of a series that might exhibit similar behavior is a temporary demand shock

that fades after a while. Figure 2 shows the weight of each regime for increasing values

of st. It is evident that the model transitions smoothly from one regime to the other.

The steepness of this transition is driven by γ.

6Robustness, on the other hand, refers to the extent to which εt directly influences yt. A robust

series is one in which εt has a small effect on yt. Measuring robustness would demand a richer model

which places a coefficient on the error term. Then, however, the error terms would have to be process

specific and each process could be formulated as an ARMA model. Solving such a model is non-trivial

and out of scope of this thesis.
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Figure 1: Simulated data from baseline 2 regime LSTAR model

Figure 2: Regime weights in baseline 2 regime LSTAR model

6.2 Example I: Weaker Recovery

I now simulate a series that exhibits weaker recovery compared to the baseline model.

This is achieved by increasing the values of the autoregressive parameters by 0.2. I hence

simulate 100 observations from a 2 regime model with parameters φ1 = (1, 0.3),φ2 =

(5, 0.5), c = 4.5, γ = 0.9 and st = yt−1. The realizations of εt are the same as in sec-

tion 6.1. Figure 3 highlights two distinct differences to the baseline model. First, due to

the stronger autocorrelation the realized values are further from the intercept. Second,

while the initial shift to regime 2 is again taking place, the series does not move back
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to regime 1. Naturally, this is a consequence of the high autoregressive dependence of

the second process as st no longer crosses the threshold value c a second time. From

figure 3 it becomes indeed evident that the values of the transition function F con-

tain limited sample variation. It is therefore important to acknowledge the relationship

between regime shifts and persistence in the subsequent analysis. The definition of

resilience outlined in section 2 emphasizes flexibility. I associate higher autoregressive

dependence with lower resilience, hence the lack of regime switches does not contradict

the definition of resilience employed in this thesis. Moreover, the reorientation dimen-

sion only focuses on the speed of adaption, hence it is to some extent irrelevant if a

regime shift occurs or not. In this specific case reorientation would be measured from

only one regime shift, namely the initial shift from regime 1 to regime 2. If no regime

shift occurs and a series can be described by a linear model, reorientation cannot be

measured. In summary, I argue that the baseline process as shown in figure 1 exhibits

the dynamic behavior that is expected from a resilient series and that a lack of such

dynamic behavior is captured by the measure of recovery.

Figure 3: Simulated data from 2 regime LSTAR model with higher AR coefficients
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Figure 4: Regime weights in 2 regime LSTAR model with higher AR coefficients

6.3 Example II: Slower reorientation

Decreasing γ relative to the baseline model changes the speed of adaption to a new

regime. I again simulate 100 observations from a 2 regime model, now with parameters

φ1 = (1, 0.1),φ2 = (5, 0.3), c = 4.5, γ = 0.6 and st = yt−1. The realizations of εt are

again the same as in the preceding simulations. Figure 5 shows how the transitions

between regimes are much slower than in the baseline model. The difference between

the adjustment speed from regime 1 to regime 2 and the adjustment speed from regime

2 to regime 1 comes from the difference in AR coefficients. Figure 6 clearly shows how

smaller γ yields more smoothly changing weights across values of st.

7 Model Selection

I use a “specific-to-general” approach for building MRSTAR models. This approach is

strongly recommended by Granger (1993) for non-linear time series models in general

and has been applied by Van Dijk and Franses (1997) and Van Dijk et al (2002) for

MRSTAR models. This strategy involves starting with a simple model and moving

to more complicated models only when diagnostic tests indicate the inadequacy of the

chosen model. (Dijk et al., 2002). Whether or not a selected model is adequate is hence
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Figure 5: Simulated data from 2 regime LSTAR model with smaller γ

Figure 6: Regime weights in 2 regime LSTAR model with smaller γ

evaluated from its sample forecasting ability (Granger, 1993). Consequently, I employ

the following model selection procedure.

1. Specify a linear AR model of order p = 1.

2. Test the null hypothesis of linearity against the alternative of STAR non-linearity

for a set of transition variables st. If linearity is rejected, select st for which

linearity is rejected the strongest, based on the p-value of the test statistic. If

linearity cannot be rejected, a linear model is estimated. Note that in this case

18



reorientation cannot be measured, as no regime shift occurs.

3. Estimate the model with selected st and test the null hypothesis of no remaining

non-linearity. If the null hypothesis is rejected, modify the model accordingly

and repeat the test until the null hypothesis of no remaining non-linearity can no

longer be rejected.

In a nutshell, this model selection procedure permits to test (1) whether or not the

STAR model framework is applicable, (2) which selection variable st should be used and

(3) how many regimes the resulting model should comprise. Section 7.1 presents the

linearity test used to evaluate if STAR non-linearity is present. Section 7.2 discusses

how to select st. Finally, section 7.3 demonstrates how to select the number of regimes

M . The significance level used for all tests is 10%.

7.1 Testing Linearity Against STAR

The natural first step of building a STAR model is testing whether or not this non-linear

framework is appropriate. From equation (3) the null hypothesis of linearity can be

expressed as either H ′0 : φ1 = φ2 or H ′′0 : γ = 0. If H ′′0 holds true, the weights become

constant and equal to 0.5, resulting in a linear model. Testing these hypotheses is

not straightforward, as nuisance parameters are not identified under the null. In other

words, there are parameters that are not restricted by the null hypothesis, but which

cannot be estimated from the data when the null hypothesis holds true. To be precise,

H ′0 does not restrict γ and c, but when H ′0 holds true, the likelihood is not affected

by the values of γ and c. Similarly, in the case of H ′′0 c, φ1 and φ2 are not identified.

Davies (1987) provides a general discussion of the problem of unidentified nuisance

parameters under the null hypothesis. Luukkonen et al. (1988) propose a solution

to this problem in the context of testing linearity against STAR alternatives. The

transition function F (st, γ, c) can be approximated by a suitable Taylor series. In the

resulting auxiliary regression the identification problem is no longer present. Moreover,

linearity can then be tested by means of a Lagrange Multiplier statistic with a standard
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asymptotic χ2 distribution under the null. From equation (2) I can approximate the

logistic function with a first-order Taylor approximation around γ = 0. This results in

the reparametrized equation

yt = β′0xt + β′1xtst + et (6)

where βi = (βi,0, βi,1, . . . , βi,p), i = 0, 1 and et = εt + (φ2 − φ1)′xtR1(st, γ, c). Here

R1(st, γ, c) is the remainder term from the Taylor approximation. γ = 0 implies β0,j 6= 0

and β1,j = 0 for j = 0, . . . , p. Hence testing H ′′0 : γ = 0 (or H ′0 : φ1 = φ2) is equivalent

to testing H ′′′0 : β1 = 0. The test statistic has an asymptotic χ2 distribution with p+ 1

degrees of freedom under the null. Following the suggestion of Teräsvirta (1994) I use

an F approximation, which is more robust especially in small samples. The test can be

carried out using a sequence of just linear regressions.

1. Regress yt on xt and obtain the residual sum of squares.

SSR0 =
1

T

T∑
t=1

ε̂2
t (7)

2. Regress ε̂t on xt and x̃tst and obtain the residual sum of squares.

SSR1 =
1

T

T∑
t=1

v̂2
t (8)

3. Compute the test statistic

F =
(SSR0 − SSR1) /p

SSR1/(T − 2p− 1)
(9)

which is approximately Fp,T−2p−1 distributed under the null of linearity.

For st = yt−d Luukkonen et al. (1988a) recommend using a third-order Taylor

approximation as otherwise the test statistic does not have power in cases where only

the intercept differs between regimes, i.e. when φ1,0 6= φ2,0 but φ1,j = φ2,j for j =

1, . . . , p. As such cases might well be present in empirical data I use a third-order
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Taylor approximation in the subsequent analysis. The resulting procedure is similar to

the one outlined above and described in greater detail in section 7.3 or Van Dijk et al.

(2002).

7.2 Selecting the transition variable st

Tsay (1989), Teräsvirta (1994), Van Dijk and Franses (1997) and Van Dijk et al (2002)

argue that the aforementioned linearity test can also be used to determine the appro-

priate transition variable. The test statistic is hence computed for a set of candidate

transition variables s1t, . . . skt and the one which yields the smallest p-value of the test

is selected. The idea behind this approach is that the test should have maximum power

in case the alternative model is correctly specified, i.e. the appropriate transition vari-

able is specified. Simulation results in Teräsvirta (1994) indicate that this approach

works well. Throughout this thesis the set of candidate transition variables considered

is yt−1, . . . , yt−5.

7.3 Testing the Hypothesis of No Remaining Non-Linearity

For given st Eitrheim and Teräsvirta (1996) shows how to test a M regime STAR model

against the alternative of a M + 1 regime STAR model as defined in equation (5). I

illustrate the testing procedure in the case of testing a 2 regime model against a 3

regime model as it naturally extends to higher numbers of regimes. The test is similar

to the linearity test presented in section 7.1 and evidently suffers from the same type

of identification problem. From equation (4) the null hypothesis of no remaining non-

linearity (a two regime model) can be expressed as H ′0 : φ3 = φ2 or H ′′0 : γ2 = 0.

The identification problem can again be circumvented by a third-order Taylor series

approximation of F2(st, γ2, c2), this time around γ2 = 0.

yt = β0xt + (φ2 − φ1)′xt × F1(st, γ1, c1) + β′1xtst + β′2xts
2
t + β′3xts

3
t + et (10)
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The null hypothesis of no remaining non-linearity translates into H ′′′0 : β1 = β2 =

β3 = 0. To obtain the test statistic I regress the residuals from estimating the model

under the null on the partial derivatives of the regression function w.r.t. the parameters

of the 2-regime model under the null and the auxiliary regressors xt, st, s
2
t , s

3
t . From

this auxiliary regression the test statistic can be computed as nR2. A more in-depth

discussion of the procedure can be found in Eitrheim and Teräsvirta (1996). The

resulting test statistic has an asymptotic χ2 distribution with 3(p+1) degrees of freedom.

8 Model Estimation

Once st has been selected the model parameters can be estimated by nonlinear least

squares (NLS). The following discussion focuses on estimating a basic 2 regime model

as all steps and issues trivially extend to multiple regimes. The skeleton of a 2 regime

model is

G (xt;θ) = φ′1xt (1− F (st; γ, c)) + φ′2xtF (st; γ, c) (11)

and the parameters θ = (φ′1,φ
′
2, γ, c)

′ can be estimated as

θ̂ = argmin
θ

QT (θ) = argmin
θ

T∑
t=1

(yt −G (xt;θ))2 (12)

Under the assumption that εt ∼ N (µ, σ2), NLS is equivalent to maximum likelihood.

The regularity conditions for consistency and asymptotic normality of NLS estimates

are discussed in Wooldridge (1994).

8.1 Choice of starting values

One key step of NLS estimation that has great practical importance is the selection

of starting values for each of the parameters θ. Poorly selected starting values result
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in the optimization algorithm not converging or converging to local minima that are

far from the true parameter values. This issue can be circumvented to some extent

by concentrating the sum of squares function, as suggested by Leybourne, Newbold

and Vougas (1998). If the parameters γ and c are fixed, the model is linear in the

remaining autoregressive parameters φ1 and φ2. Hence φ = (φ′1,φ
′
2)′ can be estimated

by ordinary least squares (OLS), conditional on γ and c. The resulting estimator is then

φ̂(γ, c) =

(
T∑
t=1

xt(γ, c)xt(γ, c)
′

)−1( T∑
t=1

xt(γ, c)yt

)
(13)

where xt(γ, c) = (xt
′ (1− F (st, γ, c)) ,xt

′F (st, γ, c))
′. Thus, the sum of squares

function QT (θ) can be concentrated with respect to φ1 and φ2 as

QT (γ, c) =
T∑
t=1

(yt − φ(γ, c)′xt(γ, c))
2

(14)

This simplifies the NLS estimation greatly, as now starting values need to be selected

only for the two parameters γ and c. Sensible starting values for γ and c can be found

from a two-dimensional grid search. For each value in the grid the NLS estimation

is performed and the starting values that result in the minimal sum of squares are

selected. Similar to Hillebrand et al. (2010) I define the grids as γ ∈ (1, 2, . . . , 100)

and c ∈ (η.10, . . . , η.90) with step size η.10−η.90
200

where η.i denotes the ith percentile of st.

Using percentiles of st as minimum and maximum starting values for c ensures that for

each choice of starting values the values of F (.) contain enough sample variation (Dijk

et al., 2002).

9 Does it Work? A Monte Carlo Evaluation Ap-

proach

I simulate a set of series to evaluate whether or not MRSTAR models can be used as

a framework to measure resilience. I specify two different data generating processes
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(DGP), a two regime model and a three regime model, as most empirical data falls into

these categories. For each DGP I then sequentially increase either its autoregressive

parameters φ = (φ1,1, . . . , φM,1) (weaker recovery ) or γ = (γ1, . . . , γM−1) (stronger

reorientation) to evaluate if the estimation procedure accurately captures these changes

in resilience. I simulate T = 100 observations from the respective models. For each

value of φ and γ the process is simulated n = 200 times.7 For each simulated series

the model selection procedure outlined in section 7 is applied. I am hence evaluating

the full modelling procedure rather than just parameter estimation. For a general

discussion of the estimator’s asymptotic properties see for example Hillebrand et al.

(2010). Naturally, the model selection procedure leaves additional room for error, as

for example a wrong number of regimes M might be selected. I evaluate recovery from

the weighted average of φ with the weights corresponding to the weight of each regime

at time t,

φ̄ =
1

T

T∑
t

M∑
m

w′tmφtm (15)

where

wm =


1− F1, if m = 1

Fm − Fm+1, if 1 < m < M

Fm, if m = M

(16)

and
∑M

m wtm = 1∀t. Reorientation, on the other hand, is simply evaluated from the

average of γ across all regimes,

γ̄ =
1

M

M∑
m

γm. (17)

7Due to computational limitations a greater number of simulations was not feasible. Generally the

results appear to be stable for n > 50 (not reported).
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The results are presented graphically. The underlying data for all figures can be

found in the appendix.

9.1 Two regime model (DGP 1)

The starting model of DGP 1 is a 2 regime LSTAR model with parameters φ1 =

(0, 0.2),φ2 = (0.5, 0.4), c = 1.5, γ = 1 and st = yt−1. εt is drawn from a standard

normal distribution. First, the autoregressive parameters are sequentially increased

by (0.1, 0.2, 0.3, 0.4), resulting in increasingly weaker recovery. Each process is then

simulated and estimated n = 200 times. Figure 7 displays the weighted average of φ̂

across regimes and its 90% confidence interval. As the true φ̄ lies within the confidence

interval of the estimator, the estimation is generally successful. Moreover, there is no

evidence of changes in estimation success for weaker or stronger recovery. One caveat,

however, exists for extreme cases where one regime dominates. I can simulate such

behavior by increasing the threshold value c so that the second regime has a very small

weight. For c = 5 recovery is no longer estimated accurately, as shown in figure 8.

Indeed the second regime is now only assigned a weight of approximately 0.002, as st

almost never crosses the threshold c.8 Consequently the model is almost linear. In

practical application I advise to evaluate ĉ and compute the estimated weights of each

regime to have an indication of whether or not an extreme case of an overly dominant

regime is present. Fine-tuning the significance level used in the linearity tests does not

mitigate this issue.

Estimating reorientation is not as successful. Similar to the evaluation of recovery I

sequentially increase γ, resulting in increasingly stronger reorientation. To be precise,

data is simulated from models with γ ∈ (10, 30, 50, 70, 90), keeping all other parameters

constant and equal to the starting model. As shown in figure 9 ¯̂γ heavily overestimates

8The notion of high values of c naturally depends on the characteristics of the process and the scale

of st. If st (i.e. yt−1) is scaled differently, c = 5 could constitute a small threshold which is crossed

frequently.
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Figure 7: Estimator performance for φ̄ in two regime model

Figure 8: Estimator performance for φ̄ in two regime model with large c

γ̄ for all values of true γ except for very high γ. This issue of poor accuracy when

estimating γ is acknowledged in the literature.9 This shortcoming results from the fact

that many observations in the immediate neighborhood of c are needed to deliver an

accurate estimate of γ. Indeed increasing the number of observations simulated from

each model to T = 100000 yields much more accurate estimates of γ̄, as indicated by

figure 10. However, in real world applications such as trade data, such vast amounts

of observations are rarely available. Using ¯̂γ as a measure of reorientation should

9See e.g. Van Dijk et al (2002) for a discussion.
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hence be applied with caution. With larger amounts of data one can expect more

accurate estimates of γ. Table 1 in the appendix shows estimator precision for T =

(100, 1000, 10000, 100000), keeping γ = 30 constant. Evidently indeed a very large

number of observations (T ≈ 10000) is needed for ¯̂γ to accurately estimate reorientation.

Figure 9: Estimator performance for γ̄ in two regime model, T = 100

Figure 10: Estimator performance for γ̄ in two regime model, T = 100000

Moreover, as seen from table 2 in the appendix, the number of regimes is slightly

overestimated (M̂ ≈ 2.4). The accuracy of this measurement (i.e. the linearity tests) is

again greater for larger T . For both DGPs the number of regimes is correctly estimated
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when T ≈ 10000, as seen from table 6 and table 7. Still, this does not seem to have

great practical consequences as recovery is estimated with high accuracy even if T is

small.

9.2 Three regime model (DGP 2)

Estimator performance is similar when the true model is a three regime model and the

same shortcomings are evident. For DGP 2 I simulate data from a 3 regime MRSTAR

model with parameters φ1 = (0, 0.1),φ2 = (0.5, 0.4),φ3 = (1, 0.15), c = (0.4, 1.8),γ =

(1, 2) and st = yt−1. Similar to the two regime case I first sequentially increase the

autoregressive parameters by (0.1, 0.2, 0.3, 0.4), corresponding to increasingly weaker

recovery. The results from this exercise are again promising. The 90% confidence

interval of
¯̂
φ generally captures the true φ̄. Only for very weak recovery the true φ̄ lies

slightly outside the 90 % confidence interval, as seen from figure 11. The estimation is,

however, still sensitive to c (not reported). Moreover, accurate estimation of γ is again

dependent on a large number of observations. This is clearly seen from figure 12 which

displays estimates of γ1 = γ2 ∈ (10, 30, 50, 70, 90) for T = 100.

Figure 11: Estimator performance for φ̄ in three regime model
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Figure 12: Estimator performance for γ̄ in three regime model

10 Empirical Application

I estimate the resilience of German car exports and US imports of consumer electronics.

Data comes from UN Comtrade and is seasonally adjusted. The data is monthly obser-

vations from 2010 to 2020 hence resulting in 132 observations for each pair of reporter

and partner. I obtained data for the 50 largest trade partners of Germany and for the

35 largest trade partners of the US, according to national statistics.10 I denote as “car

exports” all trade in “Vehicles other than railway or tramway rolling stock, and parts

and accessories thereof” according to level 2 of the Harmonized Commodity Description

and Coding System (HS). Similarly, “consumer electronics” refers to all goods traded in

“Electrical machinery and equipment and parts thereof; sound recorders and reproduc-

ers, television image and sound recorders and reproducers, and parts and accessories

of such articles”. Summary statistics are presented in table 10 and table 11 in the

appendix.11 Given the relatively small sample size and the resulting limitations in es-

10Destatis for Germany and US Census Bureau for USA. Note that while Taiwan ranks among the 50

largest trading partners of Germany it is excluded from the sample as UN Comtrade does not provide

data.
11Note that before estimation values are standardised as z = X−µ

σ , where X is the initial value, µ is

the sample mean, σ is the sample standard deviation and z is the resulting standardised value.
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timating γ I evaluate recovery and reorientation separately. Figure 13 shows estimated

recovery
¯̂
φ of German car exports.12 Strong recovery is marked as dark green and weak

recovery is indicated by light green. The borders of the reporting country, Germany,

are marked red. Notably the final sample of partner countries is slightly reduced to

43 countries, for two reasons. First, for some partner countries (Luxembourg, South

Africa) the optimization algorithm did not converge. This is likely due to a poor choice

of starting values. Second, for certain partner countries (Denmark, Belgium, Norway,

Netherlands) a single regime is estimated to dominate. As outlined in section 9.1 and

section 9.2 this reduces the accuracy of the estimate and in fact the resulting estimates

are not sensible. Generally, the pattern of recovery displayed in figure 13 makes intuitive

sense. Countries in close proximity to Germany, such as Italy, Austria and the United

Kingdom exhibit comparatively strong recovery (
¯̂
φ ≈ 0.3). This might be due to well-

established trade relationships and the European economic area which facilitates trade.

Recovery is slightly weaker, however, for Eastern European states. A similar argument

of well-established economic relationships can be made for car exports from Germany

to the US and Canada, both partner countries with long lasting trade agreements. This

finding of cultural proximity increasing resilience (here at least through the recovery

dimension) is in line with Carrére and Masood (2018), even though the definition of

resilience employed in this work is just a decline in GDP. One surprising exception to

this insight is France, which is one of Germany’s most important and most established

trade partners and only exhibits relatively weak recovery. This might be partly due to

the inclusion of 2020 in the underlying trade data, as Germany and France experienced

the Covid-19 crisis to a similar extent and took long to recover. Indeed when excluding

2020 from the data
¯̂
φFRA ≈ 0.3, which corresponds to much stronger recovery. Outside

of Europe and North America recovery is generally estimated to be lower, with the

exceptions of China and India, which exhibit strong recovery.

Reorientation of German car exports, on the other hand, is generally estimated to

be high, as can be seen from figure 14. Notable exceptions to this general assessment

12See table 12 in the appendix for details.
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Figure 13: Estimated recovery of German car exports

are the US, the UK and Portugal. As I do not expect the estimates to be accurate with

a sample size of 132 observations I refrain from interpreting these results further. Still,

further research could shed light on these patterns.
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Figure 14: Estimated reorientation of German car exports

For US imports of consumer electronics again many results match intuitive expecta-

tions. As shown in figure 15 recovery is high for well-established trade partners, such as

Canada, Germany and Japan.13 Interestingly and in contrast to German car exports,

13See table 13 in the appendix for details.
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recovery is weak for trade with Mexico and China. One possible explanation for this

pattern are increased political tensions with those trading partners over the last decade.

Trade with Russia, however, is estimated to recover quickly.

Reorientation, on the other hand, is estimated to be strong for almost all partner coun-

tries in this sample, except Mexico, Columbia and Malaysia. While for Mexico this

behavior might stem from political tensions, the general pattern is not intuitively ex-

plainable and further research (as well as more data) is needed to properly assess the

reorientation properties of the given sample.
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Figure 15: Estimated recovery of US consumer electronics imports

Generally these empirical exercises showcase how the STAR framework can be used

to comparatively analyze resilience. The descriptive results overall underline the im-

portance of well-established relationships in the context of resilient trade but do not

necessarily support the call to “nearshoring”, as voiced by e.g. the World Economic

Forum (Betti & Hong, 2020). Naturally this is only the first step in understanding

resilience, as further analysis of the underlying drivers is needed.
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Figure 16: Estimated reorientation of US consumer electronics imports

11 Conclusion

In this thesis I presented how the concept of resilience can be operationalized in

the context of trade and subsequently be parametrized and measured in a multiple

regime STAR model framework. Following the literature I defined resilience as a two-

dimensional concept entailing recovery and reorientation. Recovery refers to the speed

at which a system is capable to return to its pre-crisis path following a shock, whereas

reorientation denotes a system’s ability to adjust to a new equilibrium. Recovery can

be measured from the autoregressive coefficients in a STAR model while reorientation

is captured by the smoothness parameter γ. Two main caveats have to be accounted for

when estimating resilience through a STAR model approach. First, accurate estimation

of reorientation is only possible in data rich environments. Second, when the model

includes regimes with very low weight, estimation of recovery is likely to be inaccurate.

In practice I therefore advise to consult the estimated weights in order to rule out such

cases. Generally these insights allow for careful application of the outlined methods. I

found the resulting estimates to be sensible and deem them as a good starting point to

further analyze determinants of resilience.

Subsequent research can refine this approach in multiple ways. In the context of trade

resilience, the theoretical foundation could be strengthened by modelling each regime
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as a gravity equation. Additionally, the generality of the approach could be widened

by relaxing the assumption that each regime follows an AR(1) process. Recovery could

then be measured from the impulse response function of the model. Moreover, as the

model estimation is sensible to the choice of starting values I see potential in applying

different selection procedures to make the estimation more robust.

The outlined procedure to measure resilience has multiple advantages over existing mea-

sures. First, the identified dimensions of resilience can be measured holistically within

a single model, mitigating the risk of overlap of separate measures. Second, and in con-

trast to other measures, no subjective assessment of factors determining resilience had

to be made to construct the measure. On the contrary, the resulting estimates allow for

an objective analysis of determinants of resilience. Third, the parametrization of each

dimension allows to test estimator performance which fosters greater understanding of

the resulting estimates and mitigates the risk of wrong predictions of resilience.

Developing measures of resilience is a key step in understanding why some systems

suffer less from crises than others. This thesis adds to the discussion by presenting

a novel way of measuring resilience through parametrizing recovery and reorientation

behavior of systems. I hope that subsequent research can build upon these insights

to guide policy and system design that allows for mitigation of the welfare decreasing

effect of crises. There is no doubt we will be in dire need of such.

34



References

Andrews, D. W., & Chen, H.-Y. (1994). Approximately median-unbiased estimation of

autoregressive models. Journal of Business & Economic Statistics , 12 (2), 187–

204.

Betti, F., & Hong, P. (2020). Coronavirus is disrupting global value chains. here’s how

companies can respond. In World economic forum (Vol. 27).

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis:

forecasting and control. John Wiley & Sons.

Briguglio, L., Cordina, G., Farrugia, N., & Vella, S. (2009). Economic vulnerability

and resilience: concepts and measurements. Oxford development studies , 37 (3),

229–247.

Carrère, C., & Masood, M. (2018). Cultural proximity: A source of trade flow resilience?

The World Economy , 41 (7), 1812–1832.

Christopher, M., & Peck, H. (2004). Building the resilient supply chain. International

Journal of Logistics Management , 15 (2), 1–13.

Dias, D. A., & Marques, C. R. (2010). Using mean reversion as a measure of persistence.

Economic Modelling , 27 (1), 262–273.
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Luukkonen, R., Saikkonen, P., & Teräsvirta, T. (1988). Testing linearity against smooth

transition autoregressive models. Biometrika, 75 (3), 491–499.

Marques, C. R., et al. (2004). Inflation persistence: Facts or artefacts (Vol. 371).

European Central Bank.

Martin, R. (2012). Regional economic resilience, hysteresis and recessionary shocks.

Journal of Economic Geography , 12 (1), 1–32. doi: 10.1093/jeg/lbr019

Martin, R., & Sunley, P. (2015). On the notion of regional economic resilience: con-

ceptualization and explanation. Journal of Economic Geography , 15 (1), 1–42.

McAleer, M., & Medeiros, M. C. (2008). A multiple regime smooth transition het-

erogeneous autoregressive model for long memory and asymmetries. Journal of

Econometrics , 147 (1), 104–119.

Miroudot, S. (2020). Resilience versus robustness in global value chains: Some policy

37

http://www.julienmartin.eu/papers/LMM201901.pdf


implications. COVID-19 and trade policy: Why turning inward won’t work , 117–

130.

Monarch, R., & Schmidt-Eisenlohr, T. (2017). Longevity and the Value of Trade

Relationships. Federal Reserve Board , 2017 (1218), 1–61. doi: 10.17016/ifdp.2017

.1218

Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply

chain resilience. The international journal of logistics management .

Ringwood, L., Watson, P., & Lewin, P. (2019). A quantitative method for measuring

regional economic resilience to the great recession. Growth and change, 50 (1),

381–402.

Rose, A. (2004). Defining and measuring economic resilience to disasters. Disaster

Prevention and Management: An International Journal .

Sánchez, A. C., De Serres, A., Gori, F., Hermansen, M., & Röhn, O. (2017). Strength-
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Appendix

Figure 17: Regime weights in 4 regime MRSTAR model with parameters φ1 = (3, 0.01),

φ2 = (8, 0.6), φ3 = (7, 0.05), φ4 = (0, 0.3), c = (4, 5, 6), γ1 = γ2 = γ3 = 2 and st = yt−1.

T γ̄ ¯̂γ σ¯̂γ

100 30 87.13 25.81

1000 30 82.22 35.63

10000 30 42.80 24.10

100000 30 38.30 10.56

Table 1: Accuracy of reorientation estimation
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φ̄ σφ
¯̂
φ σ̂φ γ̄ ¯̂γ σ̂γ

¯̂
M

0.33 0.14 0.34 0.18 1.00 64.40 21.97 2.56

0.39 0.17 0.40 0.19 1.00 55.94 21.19 2.48

0.45 0.19 0.46 0.19 1.00 86.17 28.07 2.52

0.52 0.25 0.53 0.17 1.00 88.63 25.65 2.47

0.60 0.26 0.59 0.20 1.00 37.43 21.79 2.44

Table 2: Estimator performance for φ in two regime model, data for figure 7

φ̄ σφ
¯̂
φ σ̂φ γ̄ ¯̂γ σ̂γ

¯̂
M

0.20 0.04 0.25 0.19 1.00 88.33 25.35 2.65

0.30 0.08 0.31 0.19 1.00 77.91 23.32 2.54

0.40 0.13 0.36 0.18 1.00 83.19 27.44 2.56

0.50 0.18 0.43 0.17 1.00 19.73 26.44 2.58

0.60 0.20 0.45 0.17 1.00 39.54 22.69 2.58

Table 3: Estimator performance for φ in two regime model with large c, data for figure 8

φ̄ σφ
¯̂
φ σ̂φ γ̄ ¯̂γ σ̂γ

¯̂
M

0.25 0.11 0.31 0.20 10.00 58.62 24.33 2.42

0.25 0.13 0.27 0.20 30.00 69.06 22.69 2.45

0.25 0.11 0.26 0.20 50.00 86.67 27.76 2.42

0.25 0.10 0.26 0.22 70.00 89.42 23.52 2.46

0.25 0.11 0.23 0.19 90.00 88.11 24.43 2.42

Table 4: Estimator performance for γ in two regime model, T = 100. Data for figure 10.
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φ̄ σφ
¯̂
φ σ̂φ γ̄ ¯̂γ σ̂γ

¯̂
M

0.25 0.16 0.25 0.03 10.00 15.80 14.19 2.10

0.25 0.15 0.25 0.03 30.00 40.40 14.81 2.30

0.25 0.18 0.26 0.00 50.00 60.40 5.95 2.00

0.25 0.17 0.26 0.02 70.00 75.20 13.96 2.10

0.25 0.16 0.25 0.02 90.00 95.80 5.03 2.20

Table 5: Estimator performance for γ in two regime model, T = 1000000. Data for

figure 10.

T M̂ σ̂M

100.00 2.60 0.70

1000.00 2.30 0.48

10000.00 2.40 0.84

100000.00 2.10 0.32

Table 6: Accuracy of M estimation in two regime model

T M̂ σ̂M

100.00 2.30 0.67

1000.00 2.30 0.67

10000.00 2.70 0.48

100000.00 3.10 0.57

Table 7: Accuracy of M estimation in three regime model
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φ̄ σφ
¯̂
φ σ̂φ γ̄ ¯̂γ σ̂γ

¯̂
M

0.21 0.11 0.23 0.17 1.00 14.23 25.81 2.48

0.31 0.13 0.33 0.18 1.00 85.78 26.19 2.58

0.41 0.17 0.42 0.19 1.00 33.49 26.46 2.53

0.51 0.21 0.49 0.20 1.00 45.67 25.78 2.49

0.60 0.24 0.57 0.20 1.00 90.84 27.87 2.62

Table 8: Estimator performance for φ in three regime model, data for figure 11

φ̄ σφ
¯̂
φ σ̂φ γ̄ ¯̂γ σ̂γ

¯̂
M

0.23 0.10 0.31 0.18 10.00 62.14 23.94 2.53

0.23 0.11 0.35 0.19 30.00 69.75 24.48 2.44

0.23 0.09 0.33 0.20 50.00 84.92 28.07 2.56

0.23 0.09 0.31 0.18 70.00 86.16 26.02 2.43

0.23 0.10 0.33 0.19 90.00 89.59 23.24 2.43

Table 9: Estimator performance for γ in three regime model, data for figure 12
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Trade Partner
¯̂
φ ¯̂γ

ARE 0.56 100.00

AUS 1.34 62.67

AUT 0.26 100.00

BGR 0.25 100.00

BRA 0.70 78.00

CAN 0.00 100.01

CHE 0.61 100.04

CHN 0.43 100.00

CZE 0.36

EGY 0.96

ESP 0.43 77.50

FIN 0.09 89.72

FRA 0.60 100.00

GBR 0.40 2.51

GRC 0.47 100.00

HKG 0.62 100.00

HRV 0.65 100.00

HUN 0.54 88.00

IDN 0.46 100.00

IND 0.30 58.00

IRL 0.68 100.00

ISR 0.32

ITA 0.36 60.00

JPN 0.51 100.00

KOR 0.50 100.00

LTU 0.53 83.00

MEX 0.26 100.00
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MYS 0.15 55.01

POL 0.64 77.96

PRT 0.44 20.00

ROU 0.73 78.00

RUS 0.72 100.00

SAU 0.41 100.00

SGP 0.33 63.00

SRB 0.42 100.00

SVK 0.52 100.00

SVN 0.48 100.00

SWE 0.60 100.00

THA 0.58 100.00

TUR 0.39 100.00

UKR 0.55 100.00

USA 0.55 20.00

VNM 0.66 100.00

Table 12: Estimated recovery and reorientation of German car exports

Trade Partner
¯̂
φ ¯̂γ

AUS 0.31 100.00

AUT 0.85 62.00

BEL 0.24 100.00

CAN 0.28 84.00

CHE 0.51 100.00

CHL 0.00

CHN 0.78 100.00

COL 0.42 2.48
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DEU 0.15 50.45

DNK 0.51 10.00

ESP 0.41 100.00

FRA 0.66 100.00

GBR 0.62

HKG 0.72 62.00

IDN 0.64 100.00

IND 0.26 100.00

IRL 0.30 58.00

ISR 0.55 100.00

ITA 0.46 100.00

JPN 0.18 90.67

KOR 0.24 100.00

MEX 0.86 4.07

MYS 0.01 2.13

NLD 0.21 100.00

PHL 0.30 100.00

RUS 0.29 100.00

SAU 0.46 94.00

SGP 0.55 63.00

SWE 0.13 19.72

THA 0.61

TUR 0.77 100.00

VEN 0.18 84.00

VNM 0.43 54.00

Table 13: Estimated recovery and reorientation of US consumer electronics imports
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